
Chapter 2

Linear algebra

The modelling of linear systems is one of the most powerful and versatile tools
available to the natural scientist, in both theoretical and applied areas. Broadly
speaking, a system is referred to as linear if some measurable quantity of interest (e.g.,
an electric or magnetic field) responds in a linear way – i.e., loosely, ‘proportionally’ –
to some other observable quantity (e.g., the density of electric charge or current).

Notice that linear relationships may involve not only scalar quantities (represented
by single real or complex numbers), but vector quantities as well, as is the case for the
relationship between the electromagnetic fields and their sources, mentioned above
and described by Maxwell equations (see Chapter 1). The relation between electro-
magnetic fields and their sources is ‘linear’ precisely because Maxwell equations are
‘linear’ (that is, they include only the first power of fields and sources).1 Evidence of
the linearity of electromagnetism is ubiquitous: a single microwave communication
link is ordinarily exploited simultaneously for hundreds of phone calls, which su-
perpose without disrupting each other. Travelling electromagnetic waves can hence
be ‘superposed’: mathematically, this allows for their description in terms of a lin-
ear space. This description is especially powerful and fully accounts for interference
phenomena, the typical signature of the wave-like behaviour of light.

A very similar description has been borrowed to describe the behaviour of micro-
scopic, quantum mechanical systems. Here, as well, interference effects arise for the
probabilities of particles to be found at different places or in different internal states.
Here, as well, the ‘states’ of such particles are described by elements of a vector space
(in this case called a Hilbert space).

Moreover, linear relationships often offer a good approximation of complex, gen-
erally non-linear problems, so that one is lead to consider approximated ‘linearised’
versions of such problems, which can be more or less accurate (if these approxima-
tions are accurate, one says the system is a ‘linear regime’). The description of linear
systems thus plays a central role in applications as well.

At the heart of the mathematical description of linear systems lies the concept
of linear transformation between vectors. Such are the transformations that can be
represented as matrices if the dimension of the linear space is finite (which will
always be assumed to be the case in these lectures). The central aim of this chapter

1This does not mean that the dynamics derived from Maxwell equations is linear: in general, the
movement of electric charges is affected by the electromagnetic fields and, in turn, generates them, thus
inducing complex, non-linear dynamics. The relationships between density and current of charges and
fields is still linear, though.
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is introducing and developing a powerful characterisation of linear transformations,
based on the definition of their eigenvalues and associated eigenvectors, which has
bearings on most facets and areas of physics and the other natural sciences.

2.1 Real and complex vector spaces. Inner product.

A complex vector spaceH is a slight generalisation of a real vector space. It is defined
by the property that

∀ v1,v2 ∈ H and ∀ a1, a2 ∈ C : (a1v + a22) ∈ H ,

which can be worded as “for all vectors v1 and v2 belonging to the vector spaceH and
for all complex numbers a1 and a2, the linear combination (a1v1 + a2v2) still belongs to
H”. In other words, a vector space is defined by the property that by adding together
vectors and by multiplying them by scalars one stays within the vector space.2 The
fact that a1 and a2 belong toC qualifies the vector spaceH as “complex”. Had a1 and
a2 belonged toR, the vector space would have then been “real”.

A set of n vectors {v j, j ∈ [1, . . . ,n]} (where the label j is assumed to take integer
values), is said to be “linearly independent” if for any set of scalar coefficients {a j, j ∈
[1, . . . ,n]}, one has

n∑
j=1

a jv j = a1v1 + . . . + anvn , 0 .

The maximum number of linearly independent vectors d is a characteristic property of
the vector space, called its dimension.

For instance, physical space is said to have dimension three because given any four
vectors in it one may always find real coefficients such that the linear combination of
the given vectors equals zero.

A basis of a d-dimensional vector spaceH is then any set of d linearly independent
vectors. Let us denote a basis by {ê j, j ∈ [1, . . . , d]}. Any vector inH can be represented
as a linear combination of basis vectors:

∀v ∈ H : v =

d∑
j=1

v jê j ,

where the coefficients {a j} are generally complex for a complex vector space, and real
for a real space. Given a fixed basis, any vector v can then be identified with its set of d
coefficients {v j, j ∈ [1, . . . , d]}, also called ‘components’.

A scalar product between vectors may also be defined. In the case of real vector
spaces, the most commonly adopted scalar product, and the only one relevant in these
lectures, is the Euclidean scalar product, denoted by a dot “·” (and also occasionally
referred to as “dot product”). A convenient choice for a basis, and one which can
always be made, is that of a orthonormal basis, such that

ê j · êk = δ jk ,

2Note that our definition is incomplete and not rigorous, in that we should have defined all the properties
of the addition and scalar multiplication functions. This was intentional, in order to keep up the pace of the
lectures and avoid cluttering them with technicalities. We assume the reader is familiar with the definition
and properties of such basic operations.
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where the “Kronecker delta” δ jk is defined by

δ jk =

{
1 if j = k ,
0 if j , k .

An expression for the scalar product v ·w can then be easily derived as:

v ·w =

 d∑
j=1

v jê j

 ·
 d∑

j=1

wkêk

 =

d∑
j,k=1

v jwkê j · êk =

d∑
j,k=1

v jwkδ jk =

d∑
j=1

v jw j ,

where the double summation over j and k simplifies to a single one because δ jk = 0
if j , k. Also, the introduction of the scalar product allows for a systematic way
to determine the components of a vector v with respect to an orthonormal basis
{ê j, j ∈ [1, . . . , d]}:

ê j · v = ê j ·

 d∑
j=1

vkêk

 =

d∑
k=1

vkê j · êk =

d∑
k=1

vkδ jk = v j .

In the case of a complex vector space, the Euclidean product is generalised to
another scalar product, also termed ‘inner product’ or ‘sesquilinear scalar product’,3

which, for vectors v and w, we will denote as (v,w). Orthonormal bases such that

(ê j, êk) = δ jk

can be defined for the inner product as well. The inner product (v,w) can then be
expressed in terms of the components of the vectors with respect to one of such bases
as:

(v,w) =

d∑
j=1

v∗jw j .

Notice that the components of the first vector v are complex conjugated. Likewise, we can
extend the formula to derive the components of v in an orthonormal basis:

(ê j,v) = ê j ·

 d∑
j=1

vkêk

 =

d∑
k=1

vkê j · êk =

d∑
k=1

vkδ jk = v j .

in the following, for convenience, we will also represent the inner product (v,w) in
terms of the conjugate transposed vector v† (obtained by turning the column vector v
into a row and by complex conjugating all its entries):

v†w = (v,w) . (2.1)

3“Sesqui-” is a Latin root relating to “one and a half”, like in Al2O3, which is also known as Aluminium
“sesquioxide”. “Sesquilinear” then means “one-and-a-half-linear”, because this product is linear with
respect to the second input vector but only half–linear with respect to the first one (in that its coefficients
get complex conjugated).
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2.2 Linear operators (reminder)

We will hence forth always refer to complex vector spaces. Unless otherwise noted,
any of these statements hold for real spaces as well by replacing complex coefficients
with real ones. A linear transformation M acting on a complex vector space H is
defined by the following property

∀ v1,v2 ∈ H and ∀ a1, a2 ∈ C : M(a1v1 + a2v2) = a1M(v1) + a2M(v2) .

That is, the transformation of a linear combination of vectors equals the corresponding
linear combination of the transformed vectors. Because of this property, and because
any vector can be expanded as a linear combination of basis vectors, a linear transfor-
mation is completely described by its action on a set of basis vectors {ê j, j ∈ [1, . . . , d]}.
Restricting for simplicity to linear transformations between a vector space and itself
(technically known as “endomorphisms”), we can specify the action of M on each
basis vector êk as follows:

M(êk) =

d∑
j=1

M jkê j

(simply because the vector M(êk), like any other vector, can in turn be expanded in
terms of the basis {ê j, j ∈ [1, . . . , d]}). Given a basis, the transformation M is hence
completely determined by the d×d complex numbers M jk, which are usually organised
in a square matrix:

M =


M11 M12 · · · M1d

M21 M22
...

...
. . .

...
Md1 · · · · · · Mdd


Therefore, d × d complex matrices ‘represent’ the whole set of linear transformations
from a complex vector space to itself (so that, from now on, the same symbol will refer
to both matrices and to the corresponding linear transformations).

Given a linear transformation M from the d-dimensionalH intoH , one can define
its ‘inverse’ M−1 as the linear transformation such that

M−1M = MM−1 = 1 ,

where the ‘identity’ operator 1 is simply the linear operator that leaves any vector
unchanged:

∀v ∈ H : 1(v) = v .

The matrix corresponding to 1 does not depend on the basis, its entries are always
given by δ jk (where j, k ∈ [1, . . . , d]): they are all ones on the main diagonal and zeros
elsewhere.

2.2.1 The determinant (reminder)

The determinant is a map between n × n (square) matrices and scalars – complex, if the
vector space is complex, or real, if the vector space is real – numbers. The determinant
of the matrix M will be denoted by det(M). Here, we will not dwell on how to evaluate
determinants, but we will just remark that the determinant can be entirely defined by
the following three properties:



2.2. LINEAR OPERATORS (REMINDER)5

• The determinant is linear in all the rows and columns.

• The determinant is anti-symmetric under exchange of any two rows or columns.

• The determinant of the identity matrix 1 is 1, in any dimension: det(1) = 1.

No other mapping between matrices and numbers fulfills all of these conditions.
We now recall that, given the matrix entries M jk is a certain basis, a formula for

the entries of the inverse matrix (M−1) jk can be constructed. We will not remind this
formula here, but will just recall that the formula contains a factor 1/det(M). From
this fact, we can infer a first piece of information which will be valuable later on:

Proposition 1. A linear transformation M on a finite vector space can be
inverted if and only if

det(M) , 0

.

We intend now to relate the invertibility of M to another equivalent condition: we
want to prove the following statement:

Proposition 2. A linear transformation M on a finite vector space can be
inverted if and only if no vector v such that |v| , 0 exists such that M(v) = 0
(where 0 stands here for the null vector):

∃M−1 : ∀v ∈ H : M−1Mv = v ⇔ Mv , 0 ∀v ∈ H : |v| , 0 .

Proof. The direction (⇒) is easily proven ad absurdum: if a non-trivial
vector v such that Mv = 0 existed, then M−1Mv = M−10 = 0 (M0 = 0 for
any linear transformation M), so that the first condition would be violated
too. The proof of the direction (⇐) is slightly more technical: consider
the transformation of a generic vector v =

∑d
j=1 v jê j, where the {ê j} form a

basis ofH . The second condition implies:

M

 d∑
j=1

v jê j

 =

d∑
j=1

v jM(ê j) , 0 ∀ v j ∈ C,

which is equivalent to stating that the d vectors M(ê j) are also a basis of
H (because a basis is precisely a set of d vectors satisfying the condition
above for any choice of the coefficients {v j, j ∈ [1, . . . , d]}). Now, the linear
transformation M−1 can always be constructed by imposing that

M−1(M(ê j)) = ê j ∀ j ∈ [1, . . . , d] ,

because the previous prescription corresponds simply to specifying how
M−1 acts on a basis of H , which determines uniquely the transformation
M−1 and may always be done. Notice that the condition that {M(ê j), j ∈
[1, . . . , d]} constitutes a basis was crucial in this last step. We could not have
fixed the action of M−1 on a set of linearly dependent vectors, precisely because
this vectors, being mutually dependent, would not have allowed for an
arbitrary choice.

Proposition 1 and 2 lead to the following conclusion:

Proposition 3. Given a linear transformation M, a vector v with |v| , 0 such
that Mv = 0 exists if and only if det(M) = 0.
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2.3 Eigenvalues and eigenvectors of a linear operator

The eigenvalue λ and associated eigenvector v of a matrix M are defined as the scalar
and vector such that

Mv = λv . (2.2)

In other words, eigenvectors represent the directions of the vector space along which
the action of M yields vectors parallel (anti-parallel for negative eigenvalues) to the
original ones but with lengths stretched (or contracted) by factors given by the eigen-
values of M.

Eigenvalues can be determined by applying Proposition 3 from the previous Sec-
tion. In fact, Eq. (2.2) can be recast as follows:

Mv = λ1v ⇒ (M − λ1)v = 0 ,

where we have just inserted the identity operator 1 in front of a vector, as can always
be done. Now, Proposition 3 tells us that a non-zero vector v satisfying the previous
equation exists if and only if det(M − λ1) = 0 (note that the null vector is a trivial
eigenvector of any linear operator: it will be henceforth always disregarded). We have thus
determined the condition for a scalar λ to be eigenvalue of M: λ must be a root of the
so-called “characteristic equation”, given by

det(M − λ1) = 0 . (2.3)

Because of the definition of the determinant, the characteristic equation of a d × d
matrix M is an algebraic equation of order d, and has hence d roots, each equal to an
eigenvalue λ j of M, in turn corresponding to an eigenvalue v j. As we will see in the
following, more than one linearly independent eigenvector may correspond to the
same eigenvalue λ j. The polynomial det(M − λ1), of order d in λ, is referred to as the
characteristic polynomial of M.

Notice also that multiplying an eigenvector by a given scalar yields another eigen-
vector associated to the same eigenvalue. This can be easily proven: assume that v j is
an eigenvector of M with eigenvalue λ j (so that Mv j = λ jv j), and consider the action
of M on the vector cvj, where c ∈ C is any scalar:

M(cv j) = cMv j = cλ jv j = λ j(cv j) ,

which proves that cv j is also an eigenvector with eigenvalue λ j. This means that,
as already mentioned above, eigenvectors identify directions, rather than individual
vectors, along which the action of the linear operator corresponds to a dilation. Hence,
eigenvectors can only be determined up to an arbitrary multiplicative factor. Usually
it is convenient to determine normalised eigenvectors, i.e. eigenvectors of modulus 1.4

Let us now specify a systematic, pragmatic recipe to determine eigenvalues and
eigenvectors of a linear operator:

1. Write down the characteristic equation (2.3) and solve it to find the eigenvalues
λ j.

4When dealing with complex vector spaces, normalised eigenvectors may be multiplied by arbitrary
‘phase factors’ eiϕ for any ϕ ∈ [0, 2π[ and still remain normalised eigenvectors with the same associated
eigenvalue. Such an ambiguity may not be avoided: any of those eigenvectors is a valid one.
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2. For each eigenvalue λ j, write the unknown eigenvector ṽ j as ṽ j = (a, b, c, . . .)T,
where {a, b, c, . . .} are to be determined by solving the ‘eigensystem’:

Mṽ j = λ jṽ j . (2.4)

This is a linear system of d equation for d unknown variables {a, b, c, . . .}.

3. Since, as seen above, an eigensystem only determines vectors up to multiplica-
tive factors, at least one of the d linear equation of the eigensystem (2.4) will be
redundant (i.e., it will be implied by the other (d − 1) equations).

4. Hence, one of the variables {a, b, c, . . .} has to be set arbitrarily: to do this, pick
one variable, say a, and make sure that the eigensystem does not imply a = 0
(one can always find a variable like that, otherwise the eigenvector would be
zero). Then, simply set a = 1 and solve the eigensystem.

5. Once the non-normalised eigenvector ṽ j has been determined, determine the
normalised one v j by the equation v j = ṽ j/

√
(ṽ j, ṽ j).

Let us now see a concrete example. Consider the 2 × 2 matrix A:

A =

(
0 1
1 0

)
.

The characteristic equation det(A − λ1) = 0 reads (point 1)

det
(
−λ 1
1 −λ

)
= λ2

− 1 = (λ + 1)(λ − 1) = 0 .

The two solutions of the equation are hence λ1 = −1 and λ2 = 1. These are the two
eigenvalues of A. To find the eigenvector ṽ1 corresponding to λ1, one has to set

ṽ1 =

(
a
b

)
and solve the eigensystem Av1 = λ1ṽ1 for the variables a and b (point 2):

Av1 =

(
0 1
1 0

) (
a
b

)
=

(
b
a

)
= λ1ṽ1 = −v1 =

(
−a
−b

)
.

Being a vector equation, the previous equality implies two scalar equations: b = −a
and a = −b. These two equations are identical, as we should have expected from point
3 above (one equation in the eigensystem is always redundant). The only relevant
equation is then

b = −a .

This equation does not imply a = 0. Hence, according to point 4, we can set a = 1 and
have

ṽ1 =

(
1
−1

)
.

Finally, the vector ṽ1 is normalised as per point 5:

v j = ṽ j/
√

(ṽ j, ṽ j) =

(
1
−1

)
/
√

12 + (−1)2 =

(
1
−1

)
/
√

2 .
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The eigenvector v2 associated to λ2 = +1 can be determined as

v1 =

(
1
1

)
/
√

2 .

The eigenvalues and eigenvectors of real matrices are not necessarily real: consider
for example the matrix Ω:

Ω =

(
0 1
−1 0

)
.

The characteristic equation det(λ1 −Ω) = 0 reads (point 1)

det
(
λ −1
1 λ

)
= λ2 + 1 = (λ − i)(λ + i) = 0 .

The two solutions of the equation are hence λ1 = −i and λ2 = i. These are the two
eigenvalues of Ω. To find the eigenvector ṽ1 corresponding to λ1, one has to set

ṽ1 =

(
a
b

)
and solve the eigensystem Ωv1 = λ1ṽ1 for the variables a and b (point 2):

Ωv1 =

(
0 1
−1 0

) (
a
b

)
=

(
b
−a

)
= λ1ṽ1 = −iv1 =

(
−ia
−ib

)
.

As expected from from point 3, the vector equation above corresponds to a single
independent scalar equation (apparent if one multiplies one of the two rows by i).
Setting a = 1, as per point 4, determines b = −i, such that

ṽ1 =

(
1
−i

)
.

The vector ṽ1 is normalised as per point 5, recalling the rules for the inner product of
complex vectors:

v1 = ṽ1/
√

(ṽ1, ṽ1) =

(
1
−i

)
/
√

12 + i(−i) =

(
1
−i

)
/
√

2 .

It can be shown following the same steps that the normalised eigenvector v2 corre-
sponding to λ2 = +i is given by

v2 =

(
−i
1

)
/
√

2 .

2.3.1 Degenerate eigenvalues

As already pointed out, the characteristic equation (2.3), which determines the eigen-
values of the linear operator M, is an algebraic equation of order d. If two or more
solutions of the equation coincide, the characteristic polynomial is said to have degen-
erate roots. In that case, clearly, there will be less than d eigenvalues.

However, the eigenvalue corresponding to a degenerate root may have a number
of corresponding eigenvectors up to its multiplicity (this is not necessarily the case!).
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Such eigenvectors are determined by the eigensystem, like any eigenvector, but for
them the eigensystem might feature more than one redundant equation, so that one
may have to arbitrarily set more than one entry of the eigenvector.

This situation is better illustrated with a concrete example. Consider the matrix B:

B =

 5 1 2
1 5 −2
2 −2 2

 .
The characteristic equation det(λ1 − B) = 0 reads

det

 λ − 5 −1 −2
−1 λ − 5 2
−2 2 λ − 2

 = λ3
− 12λ2 + 36λ = λ(λ − 6)2 = 0 ,

with solutions 0 and 6. These are the only two eigenvalues of the matrix B. However,
note that the eigenvalue 6 is a root of the characteristic equation with multiplicity
2 (in that the factor (λ − 6) to the power 2 occurs in the characteristic polynomial).
As anticipated above, the eigenvalue 6 may have up to 2 corresponding linearly
independent eigenvectors, in which case it is said to be degenerate (‘doubly’ degenerate,
in in this instance).

The eigenvector ṽ1 corresponding to λ1 = 0 is found by setting

ṽ1 =

 a
b
c


and solving the eigensystem Bv1 = λ1ṽ1 for the variables a, b and c:

Bv1 =

 5 1 2
1 5 −2
2 −2 2


 a

b
c

 =

 5a + b + 2c
a + 5b − 2c

2a − 2b + 2c

 = λ1ṽ1 =

 0
0
0

 .
Adding up the first and second lines of the previous scalar equation yields

a + b = 0 ,

such that the third line becomes
4a + 2c = 0 .

We can then set c = 1 to get a = −1/2 and b = 1/2. Finally, the eigenvector ṽ1 =
(−1/2, 1/2, 1)T can be normalised to obtain

v1 =

 −1
1
2

 /√6 .

Let us now move on to the degenerate eigenvalue λ2 = 6. Setting

ṽ2 =

 a
b
c

 ,
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the eigensystem Bv2 = λ2ṽ2 for the variables a, b and c reads:

Bv1 =

 5 1 2
1 5 −2
2 −2 2


 a

b
c

 =

 5a + b + 2c
a + 5b − 2c

2a − 2b + 2c

 = λ2ṽ2 =

 6a
6b
6c

 .
The three equations from the vector equality above are all identical and equivalent to

a − b − 2c = 0 . (2.5)

All vectors satisfying such a relationship are eigenvectors associated toλ2 = 6. Clearly,
however, we are left with only one condition to determine the three variables a, b and
c. Two of them will have hence to be arbitrarily. By setting a = 1 and c = 1, one gets

b = −1 ,

such that the first eigenvector corresponding to λ2 is determined as

ṽ2 =

 1
−1
1

 ,
normalised as

v2 =

 1
−1
1

 /√3 .

Setting a = 1 and c = 0 instead gives

ṽ3 =

 1
1
0

 ,
normalised as

v3 =

 1
1
0

 /√2 .

The eigenvectors v2 and v3 are both associated to the same degenerate eigenvalue
λ2. Notice that the expressions of v2 and v3 depend on the choice we made for the
coefficients when solving the einsystem for λ2. Different choices could have been
made, leading to different eigenvectors v2 and v3. The choice we made was such as
to make v2 and v3 orthogonal to each other: this can always be made.

In fact, v3 could have been determined by imposing Eq. (2.5) together with the
condition of being orthogonal to v3. The latter condition would read

0 = v2 ·

 a
b
c

 = (a − b + c)/
√

3 . (2.6)

Eqs. (2.5) and (2.6) imply

a = b ,
c = 0 ,

which indeed correspond, up to normalisation, to the vector v3 above.
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2.3.2 Diagonalisable matrices

A square matrix is said to be diagonalisable if and only if the eigenvectors of the matrix
form a basis of the vector space on which it is defined. In practice, this condition can
be directly tested: for a d×d matrix, if one can find d linearly independent eigenvalues
then the matrix is diagonalisable.

As we are about to see, diagonalisability is equivalent to the existence of a basis
of the vector space where the matrix can be expressed in a very simple, ‘diagonal’
form, with non-zero entries only on the main diagonal. This sort of simplification is
extremely useful in a number of applications. In quantum mechanics, for instance, the
dynamics of a system becomes extremely easy to handle (and is in fact considered to
be ‘solved’) if one can diagonalise its Hamiltonian operator (which, roughly speaking,
plays the role of the energy). In classical mechanics, when dealing with systems that
can rotate along several axes, the diagonalisation of the inertia tensor provides one
with knowledge about the ‘principal axes’ of rotation, and with the moments of inertia
along those axes.

As illustrated by the following counterexample, not all square matrices can be diago-
nalised. Consider in fact the matrix J:

J =

(
0 1
0 0

)
.

The characteristic equation for J reads λ2 = 0, such that λ1 = 0 is the only (potentially
doubly degenerate) eigenvalue of J. In terms of the generic vector ṽ1 = (a, b)T, the
eigensystem for λ1 = 0 is

Jṽ1 =

(
b
0

)
=

(
0
0

)
.

The only condition that can be extracted from the eigensystem is hence b = 0. The
vector v1 = (1, 0)T is in fact an eigenvector of J. However, no other linearly indepen-
dent eigenvector exists. In particular, the vector v2 = (0, 1)T, orthogonal to v1 and
which would form a basis with the latter, is not an eigenvector of J as can be directly
verified:

Jv2 =

(
0 1
0 0

) (
0
1

)
=

(
1
0

)
, λ2v2 .

A matrix like J is referred to as a Jordan block. Jordan blocks are never diagonalisable.
Let us now assume that a d × d matrix M is diagonalisable, with a basis of eigen-

vectors {v j, j ∈ [1, . . . , d]}. Let λ j be the eigenvalue associated to each v j: Mv j = λ jv j.5

Let L be defined as the d × d matrix with columns equal to the d vectors v j’s. We shall
adopt the following notation:

L =
(
v1, . . .v j, . . .vd

)
, (2.7)

where each v j represents the column of entries of the vector v j in a generic basis. Since,
per hypothesis, the v j’s are linearly independent, the matrix L must be invertible: a

5Note that we are not assuming anything about the degeneracy or multiplicity of each eigenvalue: it
may well be that λ j = λk for some j and k. Also, we are not assuming here that the eigenvectors v j are
orthonormal.
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matrix L−1 exists such that L−1L = 1. Let us represent L−1 as a matrix of rows:

L−1 =



w†1
...

w†k
...

w†d


. (2.8)

Then L−1L = 1 can be expressed as

w†1
...

w†k
...

w†d


(
v1, . . .v j, . . .vd

)
=



w†1v1 · · · w†1v j · · · w†1vd
...

. . . . . .
...

w†kv1 · · · w†kv j · · · w†kvd
... . . . . . .

...
w†dv1 · · · w†dv j · · · w†dvd


=



1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1


,

where the notation for the inner product (2.1) has been used. The previous matrix
equation can be represented as

w†kv j = δ jk , (2.9)

where the ‘Kronecker delta’ δ jk is defined by: δ jk = 1 if j = k and δ jk = 0 if j , 0.
Now, let us apply the ordinary rules of matrix multiplication to evaluate the matrix

D = L−1ML, which represents the transformation M in the new basis of eigenvectors
(‘eigenbasis’):6

D = L−1M
(
v1, . . .v j, . . .vd

)
= L−1

(
Mv1, . . .Mv j, . . .Mvd

)

= L−1
(
λ1v1, . . . λ jv j, . . . λdvd

)
=



w†1
...

w†k
...

w†d


(
λ1v1, . . . λ jv j, . . . λdvd

)

=



λ1w†1v1 · · · λ jw†1v j · · · λdw†1vd
...

. . . . . .
...

λ1w†kv1 · · · λ jw†kv j · · · λdw†kvd
... . . . . . .

...
λ1w†dv1 · · · λ jw†dv j · · · λdw†dvd


=



λ1 0 0 0 0

0
. . . 0 0 0

0 0 λ j 0 0

0 0 0
. . . 0

0 0 0 0 λd


.

As anticipated above, the expression of the diagonalisable linear transformation M
in the basis given by its eigenvectors is a diagonal matrix D, with the eigenvalues on the
main diagonal and zero entries everywhere else.

6Let us recall that, in general, given an invertible matrix L and a linear operator represented by the
matrix M, the transformation L−1ML (known as ‘similarity’), represents the linear operator in the new basis
given by the columns of L. The fact that the columns of L form a basis, i.e. that they are linearly independent
vectors, is equivalent to state that the square matrix L is invertible.



2.3. EIGENVALUES AND EIGENVECTORS OF A LINEAR OPERATOR 13

In practice, the matrix L which diagonalises the matrix M is just constructed as the
matrix whose column are the eigenvalues of M, determined as detailed in section 2.3.
For instance, for the matrix A of our previous example, the matrix L is given by

L =

(
1 1
−1 1

)
/
√

2 .

The inverse L−1 is given by

L =

(
1 −1
1 1

)
/
√

2 ,

and the diagonalisation can be checked directly

L−1AL =
1
2

(
1 −1
1 1

) (
0 1
1 0

) (
1 1
−1 1

)
=

(
−1 0
0 1

)
.

2.3.3 Invariants and eigenvalues

It is clear from the expression determined above

D = L−1ML (2.10)

(where D is the diagonal matrix containing the eigenvalues of M on the main diagonal),
that the eigenvalues are invariant under a change of basis of the vector space. In fact,
consider a change of basis described by the invertible matrix N, such that M→ M′ =
N−1MN. One has M = NM′N−1, which can be inserted into Eq. (2.10) to obtain

D = L−1ML = L−1NM′N−1L = L′−1M′L′ with L′ = N−1L .

So, while the matrix of eigenvectors changes from L into N−1L, the diagonal matrix of
eigenvalues D stays the same under the change of basis.

The eigenvalues are related to other invariant quantities, which are generally much
easier to evaluate. We will only mention two of them, arguably the most useful:

• The determinant det(M), whose invariance is easily proved.7 The determinant
equals the product of all the eigenvalues of a matrix: det(M) =

∏d
1 λ j.

• The ‘trace’ tr(M), defined as the sum of the elements on the main diagonal. The
trace equals the sum of all the eigenvalues of a matrix: tr(M) =

∑d
j=1 λ j.

For instance, in the case of matrix A of our previous example, one has det(A) = −1
and tr(A) = 0, which are indeed, respectively, the product and the sum of the two
eigenvalues −1 and +1.

2.3.4 Functions of operators (optional)

Let M be an operator that can be diagonalised, i.e. such that

M = LDL−1 ,

7From Binet’s formula for the determinant of a product det(AB) = det(A)det(B), one has det(L−1ML) =

det(L−1)det(M)det(L) = 1
det(L) det(L)det(M) = det(M)
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where D is a diagonal matrix (with the eigenvalues {λ j} of M on the main diagonal
and zeros elsewhere) and L is an invertible matrix (whose columns represent the
eigenvectors of M).

Given the function of one variable f (x), the matrix representation of the operator
f (M) is evaluated as:

f (M) = L−1 f (D)L ,

where f (D) is a diagonal matrix with diagonal entries equal to { f (λ j)}.
For f (x) = x−1, this technique allows one to determine the inverse of the diagonal-

isable matrix M as follows:

D−1 =


1
λ1

0
. . .

0 1
λd


and

M−1 = LD−1L−1 .

Clearly, a matrix with any eigenvalue equal to zero has determinant zero (see Sec. 2.3.3)
and is hence not invertible.

2.4 Special Matrices

In the previous section, we saw how to diagonalise (i.e., how to find eigenvalues and
eigenvectors and how to change the basis to obtain a diagonal matrix from the original
matrix) a generic matrix. We will now describe special classes of matrices of particular
mathematical and applicative relevance, and address their diagonalisability and the
properties of their eigenvalues and eigenvectors.

Before proceeding, let us recall and introduce a couple of definitions:

• Given a matrix M, the transpose of M is denoted by MT and is obtained by writing
its rows as the column of M. In terms of matrix entries one has: MT

jk = Mkj (swap
rows and columns).

• Given a matrix M, the hermitian conjugate of M is denoted by M† and is obtained
by complex conjugation of the transpose MT: M† = MT∗. In terms of matrix
entries one has: M†jk = M∗kj (swap rows and columns and complex conjugate).

We can now list the classes of special matrices that we will deal with:

• A square matrix M is said to be normal if and only if M†M = MM†.

• A square matrix H is said to be hermitian if and only if H† = H.

• A square matrix S is said to be real and symmetric if and only if its entries are real
and ST = S.

• A square matrix U is said to be unitary if and only if U†U = UU† = 1.

• A square matrix O is said to be orthogonal if and only if it has real entries and
OTO = OOT = 1.

Let us first clarify the dependencies between the sets of matrices defined above:
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Figure 2.1: Set relationships between classes of special matrices.

• Since for real matrices hermitian conjugation is the same as transposition, or-
thogonal matrices are unitary: O†O = OTO = 1.

• Since for real matrices hermitian conjugation is the same as transposition, real
symmetric matrices are hermitian: S† = ST = S.

• Unitary matrices are normal: U†U = 1 = UU†.

• Hermitian matrices are normal: H†H = HH = HH†.

It can also be proven (a result known as spectral theorem) that normal matrices
are diagonalisable. This is, in a sense, the broader sufficient condition known for
diagonalisability. Notice that this condition is only sufficient and not necessary: there
exist diagonalisable matrices which are not normal. In general, given a non-normal
matrix, the only way to know whether it is diagonalisable or not is by trying to find its
eigenvectors and verifying whether they form a basis of the vector space or not. Notice
moreover that, since unitary, orthogonal, hermitian and real symmetric matrices are
all normal, these are other (narrower) sufficient conditions for diagonalisability. The
relations between these classes of matrices are depicted in Fig. 2.1.

2.4.1 Eigenvalues and eigenvectors of hermitian matrices

We just saw that any hermitian matrix H = H† is diagonalisable. As we shall see,
something more can be said about its eigenvalues and eigenvectors.

Because complex numbers are involved in the definition of hermiticity, we will
need a bit of notation derived from the expression for the inner product (2.1). In
general, given the vectors v and w and the square matrix M one has, because of the
definition of hermitian conjugate M†:8

v†Mw =
(
w†M†v

)∗
. (2.11)

8Notice that the notation v†Mw represents a scalar complex number, given by the action of M on w and
by the subsequent inner product with v. The same number could be represented as (v,Mw), according to
the notation for the inner product introduced in section 2.1.
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Let us then denote by λ j and λk two generic eigenvalues of the hermitian matrix H,
with corresponding eigenvectors v j and vk:

Hv j = λ jv j , (2.12)
Hvk = λkvk . (2.13)

Let multiply Eq. (2.12) on the left by v†k to obtain

v†kHv j = λ jv†kv j . (2.14)

The hermitian conjugate of Eq. (2.13) reads

v†kH† = v†kH = λ∗kv†k

(where we made use of the property H = H†), and can be multiplied on the right by
v j to get

v†kHv j = λ∗kv†kv j . (2.15)

The left hand sides of Eqs. (2.14) and (2.15) are the same, so that we can equate the
right hand sides to obtain

(λ j − λ
∗

k)v†kv j = 0 . (2.16)

Eq. (2.16) has two consequences:

• If j = k, one has v†kv j = v†j v j = |v j|
2 , 0 (because null vectors, with all zero

entries, are trivial eigenvector of any matrix and are excluded by hypothesis
when considering eigenvectors of linear operators), such that one is left with
λ j = λ∗j: the eigenvalues of hermitian matrices are always real.

• If j , k and λ j , λk, then v†kv j = 0: the eigenvector of hermitian operators associated
to different eigenvalues are orthogonal.

We saw in section 2.3.1 that, if an eigenvalue is degenerate, orthogonal eigenvectors
may always be selected to form an orthogonal basis of the ‘eigenspace’ (the subspace
of the vector space made up of eigenvectors associated to the same degenerate eigen-
value). Therefore, since as we saw above eigenvectors associated to district eigenval-
ues are orthogonal to each other, we find that the eigenvectors of a hermitian operator
may always be chosen to form an orthonormal basis.

This important result may be rephrased in terms of the transformation that di-
agonalises H, which we will call U: U−1HU = D. As we saw before, the matrix U
is the matrix with columns equal to the eigenvectors of H: if such eigenvalues are
orthonormal, the matrix U is given by

U =
(
v1, . . .v j, . . .vd

)
, with v†j vk = δ jk ,

and the inverse L−1 can be immediately constructed:

U−1 =



v†1
...

v†j
...

v†d


= U† .
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The matrix U is hence unitary: any hermitian matrix is diagonalisable and can be diago-
nalised by a unitary transformation.

Also, as we determined above, the eigenvalues of hermitian matrices are real:
during the early steps of quantum mechanics, this fact brought to identify hermitian
operators with the simplest cases of ‘observables’, whose eigenvalues (collectively
known as ‘spectra’) represent the possible outcomes of a given quantum measurement.

Real symmetric matrices being hermitian, their eigenvalues are bound to be real
too. Moreover, along the same lines described here, it can be shown that real symmet-
ric matrices can always be diagonalised by orthogonal (that is, essentially, real and
unitary) transformations. Orthogonal transformations represent generalised rota-
tions (reducing to the common spatial rotations in dimension 2 and 3): real symmetric
matrices can hence always be diagonalised by rotating the basis of the vector space.

2.5 Real quadratic forms

Matrices do not only represent linear transformations, but also quadratic combinations
of sets of variables. Let {x1, . . . , xd} be a set of d variables, assumed for simplicity to
be real, and let

∑d
j,k=1 Q jkx jxk be any generic quadratic combination of them, with real

coefficients Q jk. Notice that, since x jxk = xkx j (scalar multiplication is commutative),
the quantities Q jk can always be chosen to be symmetric, such that Q jk = Qkj, without
loss of generality for the possibility of representing any quadratic expression.

Let us then define the column vector x = (x1, . . . , xd)T and the d × d matrix Q with
entries Q jk, to write

d∑
j,k=1

Q jkx jxk = Q(x) = xTQx . (2.17)

Real symmetric matrices hence also represent all the possible quadratic forms Q(x) ∈ R
acting on real vector spaces, which are fed a vector and output a real number. The
term ‘quadratic’, refers to the additional property:

Q(ax) = a2Q(x) ∀ a ∈ R ,

which is immediately apparent in matrix form:

Q(ax) = (axT)Q(ax) = a2xTQx = a2Q(x) .

The applications of quadratic forms are beyond count: for instance, the potential
energy of a set of coupled harmonic oscillators (springs) can be represented by a real
quadratic form. Notice that because Q is symmetric, it may always be diagonalised,
which is often handy. In the next section, we will solve the dynamics of a system of
coupled oscillators: although we will not make explicit use of the potential energy
in our solution (simply because we will tackle the equations of motion directly),
we will solve the problem by a diagonalisation which is completely analogous to
diagonalising the quadratic form for the potential energy of the coupled springs.

2.6 Normal modes of oscillation

To appreciate the usefulness of the algebraic techniques we learned, it is instructive to
consider a relevant example where such techniques are applied to solve the dynamics
of a classical (non-quantum) system.
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Consider three particles of equal mass m joined by springs with elastic constant
k and rest length l, and constrained to move on a line (Fig. 2.2). By Newton’s and
Hook’s laws, the equations of motion governing the positions x1, x2 and x3 of the three
particles are:

mẍ1 = k(x2 − x1 − l) , (2.18)
mẍ2 = −k(x2 − x1 − l) + k(x3 − x2 − l) , (2.19)
mẍ3 = −k(x3 − x2 − l) . (2.20)

These second-order differential equations for the functions x1(t), x2(t) and x3(t) are
coupled: each solution will hence depend on the other two and is in general not easy
to find if the equations are tackled directly in the form given above. However, we will
see that the diagonalisation of a matrix will allow us to write down a set of equations
equivalent to the above, but much simpler to solve.

Notice that, by defining the vector of positions x = (x1, x2, x3)T and the vector of
derivatives ẍ = (ẍ1, ẍ2, ẍ3)T, the Eqs. (2.18-2.20) can be recast in vector notation as
follows:

ẍ =
k
m

Ax +
k
m

x0 , (2.21)

where

A =

 −1 1 0
1 −2 1
0 1 −1


and

x0 =

 −l
0
l

 .
The matrix A is real and symmetric, and can hence be diagonalised. We leave the diag-
onalisation procedure to the reader, and just give the result in terms of the eigenvalues
λ1, λ2 and λ3 and associated normalised eigenvectors v1, v2 and v3:

λ1 = 0 , λ2 = −1 , λ3 = −3 ,

v1 =


1/
√

3
1/
√

3
1/
√

3

 , v1 =

 1/
√

2
0

−1/
√

2

 , v1 =


1/
√

6
−2/
√

6
1/
√

6

 .
As expected, since the matrix is real and symmetric, the eigenvalues are real and the
eigenvectors are real and orthogonal. The transformation R which diagonalises A is
therefore the orthogonal transformation given by

R =


1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6

 ,
with R−1 = RT (orthogonality). One has then

RTAR = D , with D =

 0 0 0
0 −1 0
0 0 −3

 . (2.22)
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Figure 2.2: Three bodies of mass m coupled by two springs of elastic constant k and
rest length l, constrained to move along one dimension (x).

The previous equation can be multiplied through on the left by R and on the right by
RT to obtain the equivalent relation

A = RDRT .

Let us now insert this expression for A into Eq. (2.21):

ẍ =
k
m

RDRTx +
k
m

x0 ,

which can be multiplied through on the left by RT and written as

RTẍ =
k
m

DRTx +
k
m

RTx0 . (2.23)

Eq. (2.23) suggests the following definitions:

y = RTx , and y0 = RTx0 =


0
√

2l
0

 (2.24)

which, if inserted into it yields

ÿ =
k
m

Dy +
k
m

y0 . (2.25)

Now, because the matrix D is diagonal, the three scalar differential equations contained
in (2.25), are much simpler than the original system we set out to solve. In terms of
the components y1, y2 and y3 of y, one has:

ÿ1 = 0 , (2.26)

ÿ2 = −
k
m

y2 +
√

2
kl
m
, (2.27)

ÿ3 = −3
k
m

y3 . (2.28)

Each equation now depends on only one of the three unknown functions: the system
of differential equation has been ‘decoupled’. The identification of the new variables
y1, y2 and y3 which allowed for such a decoupling was made possible by the diagonal-
isation of the coupling matrix A. Notice that, although for simplicity we assumed all
the masses, spring constants and rest lengths to be the same, the very same decoupling
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would have been possible for any system of coupled harmonic oscillators, regardless
of such details. The matrix A is in fact always symmetric, and hence diagonalisable,
for these systems (a consequence, in a sense, of Newton’s reaction principle).

The three variables y1, y2 and y3, decoupling the dynamics of the coupled springs,
are commonly known as normal modes of oscillation. The mode y1 just represents the
centre of mass of the three particles (here the sum of the three positions, as all the
masses were assumed equal): in fact, its equation of motion is that of a free particle
(the force acting on y1 is zero), as expected since no external force is acting on the
three particles. Modes y2 and y3 are instead at times referred to, respectively, as the
‘breathing’ and the ‘Egyptian’ mode. Normal modes play a central role in quantum
mechanics as well, for instance in the description of quantized electromagnetic fields.

To complete our treatment, let us solve Eqs. (2.26-2.28):

y1 = At + B , (2.29)

y2 = C cos


√

k
m

t

 + D sin


√

k
m

t

 +
kl
m

t2

√
2
, (2.30)

y3 = E cos


√

3k
m

t

 + F sin


√

3k
m

t

 , (2.31)

in terms of 6 integration constants A, B, C, D, E and F (which would have to be
determined by the initial conditions, not given here). Finally, the general solution
for the orignal variables x1, x2 and x3 can be obtained by the relationship (due to the
definition of y):

x = Ry .

Multiplying the vector of solutions y(t), determined by Eqs. (2.29-2.31), by R, one gets

x1 =
1
√

3
(At + B) +

1
√

2

C cos


√

k
m

t

 + D sin


√

k
m

t

 +
kl
m

t2

√
2


+

1
√

6

E cos


√

3k
m

t

 + F sin


√

3k
m

t

 ,
x2 =

1
√

3
(At + B) −

√
2
3

E cos


√

3k
m

t

 + F sin


√

3k
m

t

 ,
x3 =

1
√

3
(At + B) −

1
√

2

C cos


√

k
m

t

 + D sin


√

k
m

t

 +
kl
m

t2

√
2


+

1
√

6

E cos


√

3k
m

t

 + F sin


√

3k
m

t

 .
As apparent, such solutions would have been extremely difficult to find without

applying matrix diagonalisation to decouple the dynamics of the system.


