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Abstract

The forms of the invariant primitive tensors for the simple Lie algebras Al, Bl, Cl
and Dl are investigated. A new family of symmetric invariant tensors is introduced
using the non-trivial cocycles for the Lie algebra cohomology. For the Al algebra it
is explicitly shown that the generic forms of these tensors become zero except for the
l primitive ones and that they give rise to the l primitive Casimir operators. Some
recurrence and duality relations are given for the Lie algebra cocycles. Tables for
the 3- and 5-cocycles for su(3) and su(4) are also provided. Finally, new relations
involving the d and f su(n) tensors are given.

1 Introduction

We devote this paper to a systematic study of the symmetric and skewsymmetric primitive
invariant tensors that may be constructed on a compact simple Lie algebra G. The sym-
metric invariant tensors give rise to the Casimirs of G; the skewsymmetric ones determine
the non-trivial cocycles for the Lie algebra cohomology (see e.g. [1]). It is well known
[2, 3, 4, 5, 6, 7, 8, 9] that there are l such invariant symmetric primitive polynomials of
order mi (i = 1, . . . , l = rank of G), which determine l independent primitive Casimir op-
erators of the same order, as well as l skewsymmetric invariant primitive tensors Ω(2mi−1)

of order (2mi − 1). The latter determine the non-trivial cocycles for the Lie algebra coho-
mology, their order being related to the topological properties of the associated compact
group manifold G which, from the point of view of the real homology, behaves as products
of l S(2mi−1) spheres [10, 11, 12, 13, 14, 15, 16, 17, 18]. The lowest examples of these ten-
sors/polynomials (m1 = 2) are the Killing tensor (which is a multiple of δij for a compact
algebra), the quadratic Casimir operator and the fully skewsymmetric structure constants
of the simple algebra G, which determine a three-cocycle on G (see Example 3.1 below).

∗St. John’s College Overseas Visiting Scholar. E-mail : j.azcarraga@damtp.cam.ac.uk. On sabbatical
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The study of the invariant primitive tensors on G (and especially in the most interesting
case G = su(n)) is not only mathematically relevant; their properties determine essential
aspects of the physical theories based on the associated group G. These range from the
form of the vertices in Feynman diagrams to the presence or absence of non-abelian anoma-
lies in gauge theories (see in this last respect the articles in [19] and references therein; see
also [20]). They are also relevant in other instances as e.g., in (higher order) Yang-Mills
duality problems [21], WZWN terms (see, e.g. [22] and references therein), W-symmetry
in conformal field theory [23], the construction of effective actions [24], etc. It is then
convenient to have an explicit expression for the primitive tensors of the different orders
as well as a convenient basis for the vector spaces of the invariant tensors of a given order.

The simplest way of obtaining an invariant symmetric tensor k(r) on G is by computing
the trace of the symmetrised product of r generators. This symmetric trace (which may
give a zero result depending on r and on the specific algebra G being considered) will
not vanish, however, for arbitrary r. As a result, the trace will give rise to arbitrarily
higher order tensors that cannot be primitive and independent of those of lower order mi

(i = 1, . . . , l), and the same will apply to the Casimir operators constructed from them.
This indicates that it is convenient to introduce a new family of tensors which is free of this
problem. We shall do this in Sec. 3 by introducing a new family of symmetric invariant
tensors t(mi) from the l primitive (2mi − 1)-cocycles Ω(2mi−1), (i = 1, . . . , l). These tensors
will turn out to be ‘orthogonal’ in a precise sense (see Lemma 3.3). We shall also show
how the l primitive Casimirs may be equivalently obtained from the t(mi) tensors or from
the cocycles Ω(2mi−1).

For the su(n) algebras many results and techniques are already available. For instance,
we can construct recursively [25] (see also [26, 4]) the so-called d-family of symmetric
invariant tensors of order m starting from the symmetric dijk (for su(n), n > 2) and
symmetrising the result d(i1...im). This family (see Sec. 6.1) has a status like the k family
i.e., for n fixed andm large enough the d(m) tensors may be expressed as linear combinations
of products of lower order ones. For fixed m and n (in su(n)) sufficiently large (in fact, for
n ≥ m) it is known how to define a basis of the vector spaces V(m) of invariant symmetric
tensors of order m, and via known identities for the d(m), how this basis reduces when
n < m. We use these properties in our discussion of the t(mi) family. In particular we
see that a formal attempt to construct t-tensors of higher rank than is allowed from their
definition necessarily yields an identically vanishing result (Sec.6.2). In proving this, we
have needed to extend the set of identities for the d and f su(n) tensors in the literature
known to us.

The paper is organised as follows. After a short general discussion of the invariance
properties of tensors and Casimir operators on G in Sec.2 the expression of the (2mi − 1)-
cocycles is given in Sec.3, where the t(mi) family of invariant symmetric tensors is intro-
duced. Sec.4 illustrates these general considerations for the su(3) and su(4) algebras.
Sec.5 provides a general discussion of the primitivity of the invariant symmetric tensors
and Casimir operators for the four infinite series Al, Bl, Cl and Dl and shows explicitly,
if not systematically, how a given primitive polynomial becomes algebraically dependent
(non-primitive) when the rank of the algebra G is reduced sufficiently. Due to the special
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relevance of the su(n) algebras, Sec.6 is devoted to illustrate these ideas for the Al case
and, in particular, the usefulness of the t(mi) family of tensors. Sec.7 discusses, again for
the four infinite series, the properties of the (2mi−1)-cocycles. The topological properties
underlying the compact group manifolds provide a clue to establish, using the Hodge star
∗ operator, duality properties for the Lie algebra cocycles. This is done in Sec.8, and some
of the formulae are illustrated by using the explicit results in Sec.4. Finally an Appendix
develops some properties of the d and f su(n) tensors for arbitrary n, and collects a number
of new expressions which are needed for the derivation of crucial results in the main text.

2 Invariant symmetric polynomials and Casimir op-

erators

Let G be a simple algebra of rank l with basis {Xi}, [Xi, Xj ] = Ck
ijXk, i = 1, . . . , r = dimG,

and let G be its (compact) associated Lie group1. Let {ωj} be the dual basis in G∗,
ωj(Xi) = δji , and consider a G-invariant symmetric tensor h of order m

h = hi1...imω
i1 ⊗ . . .⊗ ωim . (2.1)

The G-invariance of h means that
m∑
s=1

Cρ
νis
hi1...îsρis+1...im

= 0 . (2.2)

This is the case of the symmetric tensors k(m) given by the coordinates2

ki1...im =
1

m!
sTr(Xi1 . . .Xim) ≡ Tr(X(i1 . . .Xim)) , (2.3)

where sTr is the symmetric trace, sTr(Xi1 . . .Xim) =
∑
σ∈Sm

Tr(Xiσ(1)
. . .Xiσ(m)

), which is

clearly ad-invariant3. In particular,

kij = Tr(XiXj) = κδij (2.4)

1In the general discussions we adopt the ‘mathematical’ convention and take antihermitian generators
Xi and hence negative definite Killing tensor Kij = Tr(adXiadXj) ∝ −δij since G is compact. When
we consider explicit su(n) examples, we follow the ‘physical’ convention and use hermitian generators
Ti, Xi = −iTi. In this case, an i accompanies the Ckij in the r.h.s of the commutators. When the
generators are assumed to be in matrix form, we take them in the defining representation of the algebra.
We always use unit metric and hence there is no distinction among upper and lower indices, their position
being dictated by notational convenience.

2 Indices inside round brackets (i1, . . . , im) will always be understood as symmetrised with unit weight
i.e., with a factor 1/m!. We use the same unit weight convention to antisymmetrise indices inside square
brackets [i1, . . . , im].

3We denote by k(m) the invariant symmetric tensors coming from the symmetric trace (2.3). In fact
(see [5]) a complete set of l primitive (see below) invariant tensors may be constructed in this way by
selecting suitable representations. Other families of symmetric invariant tensors will be identified by an
appropriate letter, (e.g. t, d, v). Generic symmetric invariant polynomials are denoted by h.
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where, for instance, κ = −1/2 for the generators Xi of the defining representation of su(n).
Since G ∼ Te(G), the tangent space at the identity of G, we may use a left translation

Lg, g ∈ G, to obtain a left-invariant (LI) m-tensor h(g) on the group manifold G from the

m-linear mapping h : G ×
m
· · ·×G → R. Its expression is the same as (2.1) where now the

{ωj} are replaced by the LI one-forms ωi(g) on G, and (2.2) now follows from the fact that
(see, e.g. [20])

LXν(g)ω
ρ(g) = −Cρ

νiω
i(g) , ν, ρ, i = 1, . . . , r , (2.5)

where LXν(g) is the Lie derivative with respect to the vector field Xν(g) obtained by ap-
plying the (tangent) left translation map LTg to Xν(e) = Xν ; clearly the duality relation
is maintained for the vector fields {Xi(g)} and one-forms {ωj(g)}. In this context, the
G-invariance condition (2.2) reads LXν(g)h(g) = 0.

Let G moreover be compact so that the Killing tensor may be taken as the unit matrix
and let hi1...im be an arbitrary symmetric invariant tensor. Then the order m element in
the enveloping algebra U(G) defined by

C(m) = hi1...imXi1 . . .Xim (2.6)

commutes with all elements in G. This is so because the commutator [Xρ, C(m)] may be
written as

[Xρ, C
(m)] =

m∑
s=1

Cis
ρνh

i1...îsν...imXi1 . . .Xim = 0 , (2.7)

which is indeed zero as a result of the invariance condition (2.2). In fact, the only conditions
for the m-tensor h to generate a Casimir operator C(m) of G of order m are its symmetry
(non-symmetric indices would allow us to reduce the order m of C(m) by replacing certain
products of generators by commutators) and its invariance (eq. (2.7)); h does not need to
be obtained from a symmetric trace (2.3). This leads to

Lemma 2.1 (Casimirs and G-invariant symmetric polynomials)
Let h be an invariant symmetric tensor of order m. Then, C(m) = hi1...imXi1 . . .Xim is a
Casimir of G of the same order m.

It is well known [2, 3, 6, 4, 5, 7, 8, 9] that a simple algebra of rank l has l independent
(primitive) Casimir-Racah operators of order m1, . . . ,ml, the first of them given by the
standard Casimir [27] operator KijX

iXj obtained from the Killing tensor (m1 = 2) Thus,
there must be (Cayley-Hamilton) relations among the invariant tensors obtained from (2.3)
for m > ml or otherwise one would obtain an arbitrary number of primitive Casimirs. We
shall study this problem in Sec.5 and apply our results to the su(n) algebras in Sec.6.

3 Invariant skewsymmetric tensors and cocycles

Let θ(g) = ωi(g)Xi be the LI canonical form on a simple and compact groupG, and consider

the q-form Tr(θ∧
q
· · · ∧θ). Due to the cyclic property of the trace and the anticommutativity
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of one-forms, this form is zero for q even. Let q be odd. Then,

Ω(q)(g) =
1

q!
Tr(θ ∧

q
· · · ∧θ) (3.1)

is a closed form on the group manifold G, since dΩ ∝ Tr(θ ∧
q+1
· · · ∧θ) = 0 on account of the

Maurer-Cartan equations dθ = −θ ∧ θ. Since Ω(g) is not exact (it cannot be the exterior

differential of the (q− 1)-form Tr(θ∧
q−1
· · · ∧θ) which is zero because q− 1 is even) it defines

a Chevalley-Eilenberg [1] Lie algebra q-cocycle. If we set q = 2m− 1, we find that

Ω(2m−1)(g) =
1

(2m− 1)!
Tr(Xi1 . . .Xi2m−1)ωi1(g) ∧ . . . ∧ ωi2m−1(g)

=
1

(2m− 1)!

1

2m−1
Tr([Xi1 , Xi2][Xi3 , Xi4] . . . [Xi2m−3 , Xi2m−2 ]Xi2m−1)

·ωi1(g) ∧ . . . ∧ ωi2m−1(g)

=
1

(2m− 1)!

1

2m−1
C l1
i1i2

. . . C
lm−1

i2m−3i2m−2
Tr(Xl1 . . .Xlm−1Xσ)

·ωi1(g) ∧ . . . ∧ ωi2m−2(g) ∧ ωσ(g) .

(3.2)

The trace may in fact be replaced by a unit weight symmetric trace i.e., by Tr ∼ (1/m!)sTr
in (3.2), since the skewsymmetry in i1 . . . i2m−2 results in symmetry in l1 . . . lm−1. The
factor 1

2m−1 is unimportant4 and will be ignored from now on. Hence, we may define the
(2m− 1)-form on G representing a Lie algebra (2m− 1)-cocycle by

Ω(2m−1)(g) =
1

(2m− 1)!
Ωi1...i2m−2σω

i1(g) ∧ . . . ∧ ωi2m−2(g) ∧ ωσ(g) , (3.3)

the coordinates of which are given by the constant skewsymmetric tensor

Ωi1...i2m−2σ =
1

(2m− 1)!
ε
j1...j2m−2ρ
i1...i2m−2σ

C l1
j1j2

. . . C
lm−1

j2m−3j2m−2
kl1...lm−1ρ , (3.4)

where kl1...lm−1ρ is the symmetric tensor of (2.3)5 and the ε tensor is defined by

εβ1...βn
α1...αn

=
∑
σ∈Sn

(−1)π(σ)δ
βσ(1)
α1 . . . δ

βσ(n)
αn , (3.5)

where π(σ) is the parity of the permutation σ. Although (3.4) is what follows naturally
from (3.1) (setting aside the ignored factor 1/2(m−1)) it is convenient to notice that part

4 We recall that the cohomology space is a vector space, and that numerical factors, although they relate
inequivalent cocycles (different vectors in a given cohomology space H(2m−1)(G,R)), are unimportant here;
they determine only the normalisation of the different tensors.

5The invariance properties of (3.4) follow from the invariance of kl1...lm−1ρ and thus do not depend on
the fact that it is expressed by a symmetric trace (2.3).
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of the antisymmetrisation carried out by ε
j1...j2m−2ρ
i1...i2m−2σ

is unnecessary, since (cf. (3.4)) may be
rewritten as

Ωρi2...i2m−2σ =
1

(2m− 3)!
ε
j2...j2m−2

i2...i2m−2
C l1
ρj2
. . . C

lm−1

j2m−3j2m−2
kl1...lm−1σ

≡ C l1
ρ[i2

. . . C
lm−1

i2m−3i2m−2]kl1...lm−1σ

(3.6)

due to the skewsymmetry in ρ and σ of its r.h.s. This follows from the invariance of the
symmetric polynomial kl1...lm−1σ and is a generalisation of the simple m = 2 case for which
(3.6) gives

Ωρjσ = k([Xρ, Xj ], Xσ) = k(Xρ, [Xj, Xσ]) = −k([Xσ, Xj], Xρ) = −Ωσjρ . (3.7)

Indeed, for an arbitrary invariant symmetric tensor h on G of order m we have from (3.6)

(2m− 3)! Ωρi2...i2m−2σ = ε
j2...j2m−2

i2...i2m−2
h([Xρ, Xj2], [Xj3, Xj4], . . . , [Xj2m−3 , Xj2m−2 ], Xσ)

= −εj2...j2m−2

i2...i2m−2

m−1∑
s=2

h(Xρ, [Xj3, Xj4], . . . , [[Xj2s−1 , Xj2s], Xj2], . . . , [Xj2m−3 , Xj2m−2 ], Xσ)

−εj2...j2m−2

i2...i2m−2
h(Xρ, [Xj3, Xj4], . . . , [Xj2m−3 , Xj2m−2], [Xσ, Xj2])

= ε
j2...j2m−2

i2...i2m−2
h(Xρ, [Xj3, Xj4], . . . , [Xj2m−3 , Xj2m−2 ], [Xj2, Xσ])

= −εj2...j2m−2

i2...i2m−2
h([Xσ, Xj2], [Xj3, Xj4], . . . , [Xj2m−3 , Xj2m−2 ], Xρ) = −(2m− 3)! Ωσi2...i2m−2ρ ,

where we have used the invariance of h in the second equality, the Jacobi identity in the
third (to see that every term in the summation symbol is zero) and the symmetry of h
in the fourth one. The fact that the skewsymmetric tensors Ω(2mi−1) expressed by their
coordinates (3.4) or (3.6) are indeed (2mi−1)-cocycles follows from the Chevalley-Eilenberg
approach to Lie algebra cohomology already mentioned [1]; for a direct proof which uses
only the symmetry and invariance properties of the tensor used in its definition (3.6) see
[28].

Example 3.1 Let m = 2. Using δij (rather than kij) as the lowest order invariant poly-
nomial, (3.6) gives

Ωi1i2σ = C l1
i1i2
δl1σ = Ci1i2σ (3.8)

i.e., the three-cocycle Ωi1i2i3 is determined by the structure constants of G. It follows that
the 3rd Lie algebra cohomology group H3(G) is non-zero for G simple, as is well known.

Example 3.2 Let ki1i2i3 be a 3rd-order invariant symmetric polynomial. Such a 3rd-order
polynomial exists only for su(n), n > 2 (this is the reason why in four dimensions only
these groups are unsafe for non-abelian anomalies). Then, the su(n) five-cocycle is given
by (3.6)

Ωρi1i2i3σ =
1

3!
εj1j2j3i1i2i3

C l1
ρj1
C l2
j2j3

kl1l2σ . (3.9)
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The coordinates of Ω(3), Ω(5) for su(3) and for su(4) are given in tables 4.1, 4.3 and 4.4,
4.6 respectively. The expression of the three-cocycle follows directly from the structure
constants, eq. (3.8); for five-cocycles we have used the symmetric Gell-Mann tensor dijk in
(3.9) rather than kijk [kijk = (1/3!)(−i/2)3sTr(λiλjλk) =(i/4)dijk, see (4.2) below].

Since the (2m−1)-forms Ω(2m−1)(g) (3.3) are invariant, the coordinates of any (2m−1)-
cocycle on the simple Lie algebra also satisfy the relation (cf. (2.2))

2m−1∑
s=1

Cρ
νis

Ωi1...îsρis+1...i2m−1
= 0 . (3.10)

The simplest case corresponds to Example 3.1 for which

Cρ
νi1
Cρi2i3 + Cρ

νi2
Ci1ρi3 + Cρ

νi3
Ci1i2ρ = 0 (3.11)

is the Jacobi identity Cρ
ν[i1
Ci2i3]ρ = 0. Similarly, the five-cocycle (which only exists for

su(n), n > 2) satisfies

Cρ
νi1

Ω
(5)
ρi2i3i4i5

+ Cρ
νi2

Ω
(5)
i1ρi3i4i5

+ Cρ
νi3

Ω
(5)
i1i2ρi4i5

+ Cρ
νi4

Ω
(5)
i1i2i3ρi5

+ Cρ
νi5

Ω
(5)
i1i2i3i4ρ

= 0 . (3.12)

Lemma 3.1
Let hl1...lm be a symmetric G-invariant polynomial. Then,

εj1...j2mi1...i2m
C l1
j1j2

. . . C lm
j2m−1j2m

hl1...lm = 0 . (3.13)

Proof: By replacing C lm
j2m−1j2m

hl1...lm in the l.h.s of (3.13) by the other terms in (2.2) we
get

εj1...j2mi1...i2m
C l1
j1j2

. . . C
lm−1

j2m−3j2m−2
(
m−1∑
s=1

Ck
j2m−1ls

hl1...ls−1kls+1...lm−1 j2m) ,

which vanishes since all terms in the sum include products of the form Cs
jj′C

k
sj′′ antisym-

metrised in j, j′, j′′, which are zero due to the Jacobi identity, q.e.d. Note that if hl1...lm
is identified with kl1...lm in (2.3) the equality follows immediately from the fact that l.h.s.

(3.13) are the coordinates of Ωi1...i2m , and Ω(2m) ∝ Tr(θ ∧
2m
· · · ∧θ) = 0.

Corollary 3.1
Let h now be a non-primitive symmetric G-invariant polynomial, i.e., such that its coor-
dinates are given by

hi1...ipj1...jq = h
(p)
(i1...ip

h
(q)
j1...jq)

, (3.14)

where in the r.h.s. (. . .) indicates unit weight symmetrisation (see footnote 2) and h(p) and
h(q) are symmetric invariant polynomials. Then the cocycle Ω2(p+q)−1 associated to (3.14)
by (3.4) is zero.
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Proof: Ω2(p+q)−1 is given by

Ω
2(p+q)−1
i1...i2(p+q)−1

=
1

(2(p+ q)− 1)!
ε
j1...j2(p+q)−1

i1...i2(p+q)−1
C l1
j1j2

. . . C
lp
j2p−1j2p

Cm1
j2p+1j2p+2

. . . C
mq−1

j2(p+q)−3j2(p+q)−2

h
(p)
(l1...lp

h
(q)
m1...mq−1j2(p+q)−1)

and is zero by virtue of (3.13), q.e.d.

By definition, primitive tensors are not the product of lower order tensors, but may contain
non-primitive terms. It follows from Corollary 3.1 that only the primitive term in k con-
tributes to the cocycle (3.6). As a result, different families of symmetric tensors differing
in non-primitive terms lead to proportional cocycles. Thus, and as far as the construction
of the cocycles is concerned, we may use any family h(m) of symmetric invariant primitive
tensors in (3.6), not necessarily that given by (2.3); for instance, for su(n) we may use the
d family of Sec 6.1. We shall use (3.6) with the definition (2.3) unless otherwise indicated.

We introduce now a new type of symmetric invariant polynomials by using the cocycles.
Their interest will be made explicit in Sec. 6.

Lemma 3.2 (Invariant symmetric polynomials from primitive cocycles)
Let Ω(2m−1) be a primitive cocycle. The l polynomials t(m) given by

ti1...im = [Ω(2m−1)]j1...j2m−2imCi1
j1j2

. . . C
im−1

j2m−3j2m−2
(3.15)

are G-invariant, symmetric and primitive. Moreover, they are traceless for m > 2.

Proof: By construction ti1...im is an invariant polynomial (it is obtained by contracting the
invariant tensors C and Ω). It follows from (3.15) that it is symmetric under interchange
of the (i1 . . . im−1) indices. Now

ti1...im = [Ω(2m−1)]j1...j2m−2imCi1
j1j2

Ci2
j3j4

. . . C
im−1

j2m−3j2m−2

= −
2m−2∑
s=2

([Ω(2m−1)]i1j2...ĵsρ...j2m−2imCjs
ρj2

)Ci2
j3j4

. . . C
im−1

j2m−3j2m−2

−[Ω(2m−1)]i1j2...j2m−2ρCim
ρj2
Ci2
j3j4

. . . C
im−1

j2m−3j2m−2

= −[Ω(2m−1)]i1j2...j2m−2ρCim
ρj2
Ci2
j3j4

. . . C
im−1

j2m−3j2m−2

= [Ω(2m−1)]ρj2...j2m−2i1Cim
ρj2
Ci2
j3j4

. . . C
im−1

j2m−3j2m−2

= timi2...im−1i1 ,

where we have used the invariance (3.10) of Ω(2m−1) in the second equality, the Jacobi
identity in the third and the skewsymmetry of Ω(2m−1) in the fourth. Thus t is invariant
under the change i1 ↔ im and hence it is a completely symmetric tensor. For m = 2 eq.
(3.15) is proportional to the unit matrix since

Cj1j2i2Ci1
j1j2

= Ki1i2 (3.16)
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is the Killing tensor K. If we contract (3.15) with δi1i2 for m > 2 we see that

tσ
σi3...im = 0 (3.17)

by using the Jacobi identity for Cσj1j2C
σ
j3j4

, q.e.d.
Since ki1i2 ∝ δi1i2 , the tracelessness of (3.15) may be seen as ti1...im having zero con-

traction with kij. This extends to the full contractions with all higher order symmetric
invariant tensors by means of the following

Lemma 3.3
Let ti1...im be the symmetric invariant polynomial given by (3.15). Then

ti1...ilil+1...imti1...il = 0 , ∀l < m . (3.18)

Proof: (3.18) is a consequence of Lemma 3.1, q.e.d.

Note. Eq. (3.18) implies the ‘orthogonality’ of the different polynomials t
(m)
i1...im

obtained

from (2m−1)-cocycles. Thus, a basis for the space V(m) of invariant symmetric polynomials
of order m is given by the symmetrised products of the primitive symmetric invariant
polynomials (or their powers) leading to a symmetric invariant tensor of order m. We may
express this as a

Corollary 3.2
The symmetric invariant primitive polynomial t(m) and the symmetrised products t(m−r1)⊗
t(r1), t(m−r1−r2) ⊗ t(r1)⊗ t(r2) (see (3.14)) etc., constitute a basis of the vector space V(m) of
the G-invariant symmetric polynomials on G of order m.

Example 3.3 For su(n) the vector space of symmetric invariant polynomials of order six

is given by t
(6)
i1...i6

, t
(4)
(i1...i4

δi5i6), t
(3)
(i1i2i3

t
(3)
i4i5i6), δ(i1i2δi4i5δi5i6) (t

(3)
i1i2i3

is proportional to di1i2i3 , see

Sec.6.2).

As a consequence of Lemma 3.2, it follows that we can obtain Casimir operators C′ from
cocycles by means of

Corollary 3.3 (Generalised Casimirs from primitive cocycles)
The operator

C′(m) = [Ω(2m−1)]j1...j2m−1Xj1 . . .Xj2m−1 (3.19)

is an m-order Casimir operator for G.

9



Proof: Using the skewsymmetry of Ω(2m−1) we rewrite (3.19) in the form

C′(m) = [Ω(2m−1)]j1...j2m−1Xj1 . . .Xj2m−1

=
1

2m−1
[Ω(2m−1)]j1...j2m−2σ[Xj1, Xj2] . . . [Xj2m−3 , Xj2m−2 ]Xσ

=
1

2m−1
[Ω(2m−1)]j1...j2m−2σCi1

j1j2
. . . C

im−1

j2m−3j2m−2
Xi1 . . .Xim−1Xσ

=
1

2m−1
ti1...im−1σXi1 . . .Xim−1Xσ

(3.20)

and it follows that it is a Casimir as a consequence of Lemma 2.1, q.e.d.

4 The case of su(n): coordinates of the su(3)- and su(4)-

cocycles

Let us take as a basis {Ti} of the su(n) algebra the (n2− 1) traceless and hermitian n× n
matrices of the defining representation of su(n) satisfying the relations

[Ti, Tj ] = ifij
k
· Tk , {Ti, Tj} = cδij + dij

k
· Tk ,

Tr(TiTj) =
1

2
δij , TiTj =

c

2
δij +

1

2
dij

k
· Tk +

i

2
fij

k
· Tk ,

(4.1)

where i, j, k = 1, . . . , n2 − 1 and c ≡ 1
n

(for a study of the su(3) tensors, see [29]). In the
‘physical’ (Gell-Mann) basis, it is customary to use the λ-matrices λi = 2Ti for which the
above relations trivially become

[λi, λj] = 2ifij
k
· λk , {λi, λj} = 4cδij + 2dij

k
· λk ,

Tr(λiλj) = 2δij , λiλj = 2cδij + (dij
k
· + ifij

k
· )λk .

(4.2)

Using the Gell-Mann representation of su(3) we have

Table 4.1 Non-zero structure constants for su(3).

f123 = 1 f147 = 1/2 f156 = −1/2
f246 = 1/2 f257 = 1/2 f345 = 1/2

f367 = −1/2 f458 =
√

3/2 f678 =
√

3/2

Table 4.2 3rd-order invariant symmetric polynomial for su(3).

d118 = 1/
√

3 d228 = 1/
√

3 d338 = 1/
√

3 d888 = −1/
√

3

d448 = −1/(2
√

3) d558 = −1/(2
√

3) d668 = −1/(2
√

3) d778 = −1/(2
√

3)
d146 = 1/2 d157 = 1/2 d247 = −1/2 d256 = 1/2
d344 = 1/2 d355 = 1/2 d366 = −1/2 d377 = −1/2
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The fijk constitute the coordinates of the su(3) three-cocycle. If we use the structure
constants fijk and the symmetric dijk to define [c.f. (3.9)] the coordinates of the five-cocycle
Ω(5) by

Ω
(5)
i1i2i3i4i5

= f ji1[i2f
k
i3i4]djki5 , (4.3)

we obtain

Table 4.3 Non-zero coordinates of the su(3) five-cocycle.

Ω12345 = 1/4 Ω12367 = 1/4 Ω12458 =
√

3/12,

Ω12678 = −
√

3/12 Ω13468 = −
√

3/12 Ω13578 = −
√

3/12,

Ω23478 =
√

3/12 Ω23568 = −
√

3/12 Ω45678 = −
√

3/6.

Using the natural extension of the Gell-Mann labelling of generators to su(4) in agree-
ment with the contents of Table VI in [30] (where in its second part f should be replaced
by d), we have

Table 4.4 Non-zero structure constants for su(4).

f1,2,3 = 1 f1,4,7 = 1/2 f1,5,6 = −1/2
f1,9,12 = 1/2 f1,10,11 = −1/2 f2,4,6 = 1/2
f2,5,7 = 1/2 f2,9,11 = 1/2 f2,10,12 = 1/2
f3,4,5 = 1/2 f3,6,7 = −1/2 f3,9,10 = 1/2

f3,11,12 = −1/2 f4,5,8 =
√

3/2 f4,9,14 = 1/2
f4,10,13 = −1/2 f5,9,13 = 1/2 f5,10,14 = 1/2

f6,7,8 =
√

3/2 f6,11,14 = 1/2 f6,12,13 = −1/2

f7,11,13 = 1/2 f7,12,14 = 1/2 f8,9,10 = 1/(2
√

3)

f8,11,12 = 1/(2
√

3) f8,13,14 = −1/
√

3 f9,10,15 =
√

2/
√

3

f11,12,15 =
√

2/
√

3 f13,14,15 =
√

2/
√

3

Table 4.5 3rd-order invariant symmetric polynomial for su(4).

d4,4,3 = 1/2 d5,5,3 = 1/2 d6,6,3 = −1/2 d7,7,3 = −1/2
d9,9,3 = 1/2 d10,10,3 = 1/2 d11,11,3 = −1/2 d12,12,3 = −1/2

d1,1,8 = 1/
√

3 d2,2,8 = 1/
√

3 d3,3,8 = 1/
√

3 d4,4,8 = −1/(2
√

3)

d5,5,8 = −1/(2
√

3) d6,6,8 = −1/(2
√

3) d7,7,8 = −1/(2
√

3) d8,8,8 = −1/
√

3

d9,9,8 = 1/(2
√

3) d10,10,8 = 1/(2
√

3) d11,11,8 = 1/(2
√

3) d12,12,8 = 1/(2
√

3)

d13,13,8 = −1/
√

3 d14,14,8 = −1/
√

3 d1,1,15 = 1/
√

6 d2,2,15 = 1/
√

6

d3,3,15 = 1/
√

6 d4,4,15 = 1/
√

6 d5,5,15 = 1/
√

6 d6,6,15 = 1/
√

6
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d7,7,15 = 1/
√

6 d8,8,15 = 1/
√

6 d9,9,15 = −1/
√

6 d10,10,15 = −1/
√

6

d11,11,15 = −1/
√

6 d12,12,15 = −1/
√

6 d13,13,15 = −1/
√

6 d14,14,15 = −1/
√

6

d15,15,15 = −2/
√

6 d1,4,6 = 1/2 d1,5,7 = 1/2 d1,9,11 = 1/2
d1,10,12 = 1/2 d2,4,7 = −1/2 d2,5,6 = 1/2 d2,9,12 = −1/2
d2,10,11 = 1/2 d4,9,13 = 1/2 d4,10,14 = 1/2 d5,9,14 = −1/2
d5,10,13 = 1/2 d6,11,13 = 1/2 d6,12,14 = 1/2 d7,11,14 = −1/2
d7,12,13 = 1/2

Table 4.6 Non-zero coordinates of the su(4) five-cocycle.

Ω1,2,3,4,5 = 1/4 Ω1,2,3,6,7 = 1/4 Ω1,2,3,9,10 = 1/4

Ω1,2,3,11,12 = 1/4 Ω1,2,4,5,8 =
√

3/12 Ω1,2,4,9,14 = 1/12
Ω1,2,4,10,13 = −1/12 Ω1,2,5,9,13 = 1/12 Ω1,2,5,10,14 = 1/12

Ω1,2,6,7,8 = −
√

3/12 Ω1,2,6,11,14 = −1/12 Ω1,2,6,12,13 = 1/12

Ω1,2,7,11,13 = −1/12 Ω1,2,7,12,14 = −1/12 Ω1,2,8,9,10 =
√

3/36

Ω1,2,8,11,12 = −
√

3/36 Ω1,2,9,10,15 =
√

6/18 Ω1,2,11,12,15 = −
√

6/18

Ω1,3,4,6,8 = −
√

3/12 Ω1,3,4,11,13 = 1/12 Ω1,3,4,12,14 = 1/12

Ω1,3,5,7,8 = −
√

3/12 Ω1,3,5,11,14 = −1/12 Ω1,3,5,12,13 = 1/12
Ω1,3,6,9,13 = −1/12 Ω1,3,6,10,14 = −1/12 Ω1,3,7,9,14 = 1/12

Ω1,3,7,10,13 = −1/12 Ω1,3,8,9,11 = −
√

3/36 Ω1,3,8,10,12 = −
√

3/36

Ω1,3,9,11,15 = −
√

6/18 Ω1,3,10,12,15 = −
√

6/18 Ω1,4,5,9,12 = 1/12
Ω1,4,5,10,11 = −1/12 Ω1,4,7,9,10 = 1/12 Ω1,4,7,11,12 = 1/12

Ω1,4,7,13,14 = 1/12 Ω1,4,8,11,13 = −
√

3/36 Ω1,4,8,12,14 = −
√

3/36

Ω1,4,11,13,15 =
√

6/36 Ω1,4,12,14,15 =
√

6/36 Ω1,5,6,9,10 = −1/12

Ω1,5,6,11,12 = −1/12 Ω1,5,6,13,14 = −1/12 Ω1,5,8,11,14 =
√

3/36

Ω1,5,8,12,13 = −
√

3/36 Ω1,5,11,14,15 = −
√

6/36 Ω1,5,12,13,15 =
√

6/36

Ω1,6,7,9,12 = 1/12 Ω1,6,7,10,11 = −1/12 Ω1,6,8,9,13 = −
√

3/36

Ω1,6,8,10,14 = −
√

3/36 Ω1,6,9,13,15 =
√

6/36 Ω1,6,10,14,15 =
√

6/36

Ω1,7,8,9,14 =
√

3/36 Ω1,7,8,10,13 = −
√

3/36 Ω1,7,9,14,15 = −
√

6/36

Ω1,7,10,13,15 =
√

6/36 Ω1,9,12,13,14 = −1/12 Ω1,10,11,13,14 = 1/12
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Ω2,3,4,7,8 =
√

3/12 Ω2,3,4,11,14 = 1/12 Ω2,3,4,12,13 = −1/12

Ω2,3,5,6,8 = −
√

3/12 Ω2,3,5,11,13 = 1/12 Ω2,3,5,12,14 = 1/12
Ω2,3,6,9,14 = 1/12 Ω2,3,6,10,13 = −1/12 Ω2,3,7,9,13 = 1/12

Ω2,3,7,10,14 = 1/12 Ω2,3,8,9,12 =
√

3/36 Ω2,3,8,10,11 = −
√

3/36

Ω2,3,9,12,15 =
√

6/18 Ω2,3,10,11,15 = −
√

6/18 Ω2,4,5,9,11 = 1/12
Ω2,4,5,10,12 = 1/12 Ω2,4,6,9,10 = 1/12 Ω2,4,6,11,12 = 1/12

Ω2,4,6,13,14 = 1/12 Ω2,4,8,11,14 = −
√

3/36 Ω2,4,8,12,13 =
√

3/36

Ω2,4,11,14,15 =
√

6/36 Ω2,4,12,13,15 = −
√

6/36 Ω2,5,7,9,10 = 1/12

Ω2,5,7,11,12 = 1/12 Ω2,5,7,13,14 = 1/12 Ω2,5,8,11,13 = −
√

3/36

Ω2,5,8,12,14 = −
√

3/36 Ω2,5,11,13,15 =
√

6/36 Ω2,5,12,14,15 =
√

6/36

Ω2,6,7,9,11 = 1/12 Ω2,6,7,10,12 = 1/12 Ω2,6,8,9,14 =
√

3/36

Ω2,6,8,10,13 = −
√

3/36 Ω2,6,9,14,15 = −
√

6/36 Ω2,6,10,13,15 =
√

6/36

Ω2,7,8,9,13 =
√

3/36 Ω2,7,8,10,14 =
√

3/36 Ω2,7,9,13,15 = −
√

6/36

Ω2,7,10,14,15 = −
√

6/36 Ω2,9,11,13,14 = −1/12 Ω2,10,12,13,14 = −1/12

Ω3,4,5,9,10 = 1/6 Ω3,4,5,13,14 = 1/12 Ω3,4,8,9,13 = −
√

3/36

Ω3,4,8,10,14 = −
√

3/36 Ω3,4,9,13,15 =
√

6/36 Ω3,4,10,14,15 =
√

6/36

Ω3,5,8,9,14 =
√

3/36 Ω3,5,8,10,13 = −
√

3/36 Ω3,5,9,14,15 = −
√

6/36

Ω3,5,10,13,15 =
√

6/36 Ω3,6,7,11,12 = −1/6 Ω3,6,7,13,14 = −1/12

Ω3,6,8,11,13 =
√

3/36 Ω3,6,8,12,14 =
√

3/36 Ω3,6,11,13,15 = −
√

6/36

Ω3,6,12,14,15 = −
√

6/36 Ω3,7,8,11,14 = −
√

3/36 Ω3,7,8,12,13 =
√

3/36

Ω3,7,11,14,15 =
√

6/36 Ω3,7,12,13,15 = −
√

6/36 Ω3,9,10,13,14 = −1/12

Ω3,11,12,13,14 = 1/12 Ω4,5,6,7,8 = −
√

3/6 Ω4,5,6,11,14 = −1/12
Ω4,5,6,12,13 = 1/12 Ω4,5,7,11,13 = −1/12 Ω4,5,7,12,14 = −1/12

Ω4,5,8,9,10 =
√

3/9 Ω4,5,8,13,14 = 5
√

3/36 Ω4,5,9,10,15 =
√

6/18

Ω4,5,13,14,15 = −
√

6/18 Ω4,6,7,9,14 = −1/12 Ω4,6,7,10,13 = 1/12

Ω4,6,8,9,11 =
√

3/18 Ω4,6,8,10,12 =
√

3/18 Ω4,6,9,11,15 =
√

6/36

Ω4,6,10,12,15 =
√

6/36 Ω4,7,8,9,12 =
√

3/18 Ω4,7,8,10,11 = −
√

3/18

Ω4,7,9,12,15 =
√

6/36 Ω4,7,10,11,15 = −
√

6/36 Ω4,8,9,13,15 = −
√

2/12

Ω4,8,10,14,15 = −
√

2/12 Ω4,9,11,12,14 = −1/12 Ω4,10,11,12,13 = 1/12

Ω5,6,7,9,13 = −1/12 Ω5,6,7,10,14 = −1/12 Ω5,6,8,9,12 = −
√

3/18

13



Ω5,6,8,10,11 =
√

3/18 Ω5,6,9,12,15 = −
√

6/36 Ω5,6,10,11,15 =
√

6/36

Ω5,7,8,9,11 =
√

3/18 Ω5,7,8,10,12 =
√

3/18 Ω5,7,9,11,15 =
√

6/36

Ω5,7,10,12,15 =
√

6/36 Ω5,8,9,14,15 =
√

2/12 Ω5,8,10,13,15 = −
√

2/12

Ω5,9,11,12,13 = −1/12 Ω5,10,11,12,14 = −1/12 Ω6,7,8,11,12 =
√

3/9

Ω6,7,8,13,14 = 5
√

3/36 Ω6,7,11,12,15 =
√

6/18 Ω6,7,13,14,15 = −
√

6/18

Ω6,8,11,13,15 = −
√

2/12 Ω6,8,12,14,15 = −
√

2/12 Ω6,9,10,11,14 = −1/12

Ω6,9,10,12,13 = 1/12 Ω7,8,11,14,15 =
√

2/12 Ω7,8,12,13,15 = −
√

2/12

Ω7,9,10,11,13 = −1/12 Ω7,9,10,12,14 = −1/12 Ω8,9,10,11,12 = −
√

3/18

Ω8,9,10,13,14 =
√

3/36 Ω8,11,12,13,14 =
√

3/36 Ω9,10,11,12,15 = −
√

6/9

Ω9,10,13,14,15 = −
√

6/9 Ω11,12,13,14,15 = −
√

6/9

Any pair of sets of non-zero coordinates (i1, i2, i3) and (i4, i5, i6, i7, i8) for the su(4) three-
and five-cocycles with distinct index sets defines a non-zero coordinate of the seven-cocycle,
the indices (i9, . . . , i15) of which take the remaining available values in the set i=(1, · · · , 15)
[see (8.15) below]. There are more than 400 non-zero such coordinates, which are not given
here.

5 Primitive invariant symmetric polynomials,

Casimirs and cocycles

5.1 General considerations and the case of su(n)

The polynomial ring of commuting operators in the enveloping algebra U(G) of a simple
algebra G is freely generated by l Casimir-Racah operators [2, 3, 6, 4, 5, 7, 8, 9] of orders
m1, . . . ,ml. As a result, the k(m) polynomials for su(n), say, will be expressible in terms of
the lower order primitive ones if m > n = l+1. For instance, ki1i2i3i4 = 1

4!
sTr(Xi1Xi2Xi3Xi4)

for su(4) is primitive and generates a (non-trivial) fourth-order Casimir, but it turns out
to be proportional to δ(i1i2δi3i4) (and does not lead to a fourth-order primitive Casimir)
when the Ti ∈ su(3) (see Example 5.1 below and (6.9)). The case of su(l + 1) has been
considered before (see, e.g., [31, 26, 25]) but to our knowledge there is no unified treatment
available in the literature for the four simple infinite series.

Let us start by recalling the case of su(n) [31] and consider

εβ1...βn+1
α1...αn+1

(Ti1)α1
·β1
· · · (Tin+1)

αn+1

·βn+1
= 0 . (5.1)

This expression is symmetric in the generator indices i1 . . . in+1 and is obviously zero since
the matrix representation indices α, β range from 1 to n. Using (3.5), it follows that the
above expression is a sum of (n+1)!-terms which may be grouped in classes, each class being
a sum of terms all involving a product of the same number ν1, . . . , νn+1 of products of traces
of products of 1, . . . , n+1 matrices respectively, where 1·ν1+2·ν2+. . .+(n+1)νn+1 = (n+1).
In other words, the different types of products appearing in (3.5) are characterised by the
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partitions of (n + 1) elements i.e. by the Young patterns (see, e.g., [32]) associated with
Sn+1,

[(n+ 1)νn+1, nνn , . . . , 2ν2, 1ν1] (5.2)

(obviously, νn+1 = 1 or 0). All the elements of Sn+1 for a given pattern (a set of fixed
integers ν1, . . . , νn+1) determine products of traces of matrices with the same grouping
pattern and, moreover, appear in (5.1) with the same sign (they correspond in Sn+1 to
the same conjugation class). The number of SN elements associated with a given Young
pattern is given by the 1844 Cauchy formula

N !

ν1!2ν2ν2!3ν3ν3! . . .NνN
(5.3)

and since they correspond to permutations σ ∈ SN with (equal) parity π(σ),

π(σ) = (−1)ν2+ν4+ν6+... , (5.4)

they all contribute to (5.1) with the same sign.
The mechanism which expresses the higher-order symmetric invariant polynomials in

terms of the primitive ones is now clear. A given Young pattern determines a specific
product of invariant symmetric tensors with the sign (5.4) and weighted by the factor (5.3).
Since one of the terms in the sum (5.1) corresponds to the partition ν1 = . . . = νN−1 =
0 , νN = 1, it follows that the invariant symmetric tensor of order m = n + 1 = l + 2 will
be expressed, through (5.1), in terms of the l tensors of order 2, 3, . . . , l + 1 and that only
these are primitive for n = l + 1.

We are thus lead to the following

Lemma 5.1 (Invariant symmetric polynomials on su(n))
There are l invariant polynomials of order 2, 3, . . . , l+ 1; the others are not primitive, and
may be expressed in terms of products of them.

The simplest application is that di1i2i3 = 0 for su(2). For the next higher order we have
the following

Example 5.1
Let G = su(3). Using the λi matrices, (i = 1, . . . , 8), we find, since they are tridimensional,

εβ1β2β3β4
α1α2α3α4

(λi1)α1
·β1

(λi2)α2
·β2

(λi3)α3
·β3

(λi4)α4
·β4

= s{
1

222
Tr(λi1λi2)Tr(λi3λi4)−

1

4
Tr(λi1λi2λi3λi4)} = 0 ,

where, as before, s means symmetrisation in all indices i1, i2, i3, i4. Thus, the fourth-order
symmetric tensor can be expressed in terms of the Killing second-order one. Using (4.2)
we find

Tr(λ(i1λi2λi3λi4)) = 2δ(i1i2δi3i4) , (5.5)
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But using again (4.2) we may compute directly for su(n)

1

4!
sTr(λi1λi2λi3λi4) =

1

4 · 4!
sTr({λi1, λi2}{λi3, λi4}) =

4

n
δ(i1i2δi3i4) + 2dρ(i1i2di3i4)ρ . (5.6)

Eq. (5.5) and eq. (5.6) for n = 3 now give dρ(i1i2di3i4)ρ = 1
3
δ(i1i2δi3i4). For su(3), the tensor

ki1i2i3i4 [eq. (2.3)] is given by

ki1i2i3i4 =

(
−i

2

)4

Tr(λ(i1λi2λi3λi4)) =
1

12
δ(i1i2δi3i4) +

1

8
dρ(i1i2di3i4)ρ . (5.7)

5.2 The case of so(n) and sp(l)

Let us now turn to the case of the orthogonal (odd, even) (Bl, Dl) and symplectic (Cl)
algebras. In the defining representation these groups preserve the n × n euclidean or
symplectic metric η and thus the generators Xi of these algebras satisfy

Xiη = −ηX t
i , (5.8)

where i = 1, . . . , l(2l + 1), l ≥ 2, n = 2l + 1 (Bl); i = 1, . . . , l(2l + 1), l ≥ 3, n = 2l (Cl);
and i = 1, . . . , l(2l − 1), l ≥ 4, n = 2l (Dl).

The symmetrised products of an odd number of generators of the orthogonal and sym-
plectic groups also satisfies (5.8); hence, they are a member of their respective algebras.
In particular, we may write

{Xi1, Xi2 , Xi3} = vi1i2i3
σ
· Xσ , (5.9)

where the bracket { , . . . , } denotes symmetrisation i.e., it is the sum of the 6 possible
products and vi1i2i3σ is an invariant symmetric polynomial [18]. Now we may define a new
v(m) family of invariant symmetric polynomials (cf. d(m) used in (6.1) for su(n)) by

vi1...i2p = v(i1i2i3
α1

·
vα1i4i5

α2
· · · · vαp−2i2p−2i2p−1i2p) (5.10)

With this notation (see (2.4))

ki1...i2p =
1

(2p)!
sTr(Xi1 · · ·Xi2p) ≡ Tr(X(i1 · · ·Xi2p))

=
1

6p−1
Tr({. . .{{X(i1 , Xi2 , Xi3}, Xi4, Xi5}, . . . , Xi2p−2 , Xi2p−1}Xi2p))

=
1

6p−1
v(i1i2i3

α1

·
vα1i4i5

α2
· · · · vαp−2i2p−2i2p−1

σ
·
Tr(XσXi2p))

=
κ

6p−1
v(i1i2i3

α1

·
vα1i4i5

α2
· · · · vαp−2i2p−2i2p−1i2p) .

(5.11)

Thus,

ki1...i2p =
κ

6p−1
vi1...i2p . (5.12)

This leads us to the following simple lemma
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Lemma 5.2 (Generation of higher order invariant symmetric polynomials for Bl, Cl, Dl)
Let vi1i2i3i4 be the second lowest symmetric invariant polynomial for Bl, Cl, Dl. Then, the
higher order symmetric polynomials ki1...i2p may be written in terms of vi1i2i3i4 by means
of (5.12) and (5.10).

Let now G be Bl (Cl) and let Xi be a basis for Bl (Cl) given by (2l+1)- (2l)- dimensional
matrices. Then, since the symmetric trace of a product of an odd number of X’s is zero,
and any partition of an odd number of elements will always include a symmetric trace of
an odd number of X’s we have to consider an even product

εβ1...β2l+2
α1...α2l+2

(Xi1)
α1
·β1

(Xi2)α2
·β2
· · · (Xi2l+2

)
α2l+2

·β2l+2
= 0 ; (5.13)

otherwise each term in the l.h.s. would be zero. Reasoning as before, but taking now into
account that only traces of an even number of factors are different from zero, we are led
to the following

Lemma 5.3 (Invariant symmetric polynomials for Bl, Cl)
The symmetric invariant polynomials for Bl, Cl given by (2.3) are all of even order m = 2k
and non-primitive for m > 2l. The relation which expresses the lowest non-primitive
symmetric polynomial in terms of the primitive ones follows from the equality∑

partitions

(−1)ν2+ν4+...+ν2l+2

2ν2ν2!4ν4ν4! . . . (2l + 2)ν2l+2

·s
{

[Tr(Xi1Xi2)]ν2[Tr(Xi2ν2+1Xi2ν2+2Xi2ν2+3Xi2ν2+4)]ν4 . . .
}

= 0 ,

(5.14)

where
∑

is extended over all partitions of (2l+ 2) in (even) factors (all Young patterns of
S2l+2) and there is symmetrisation over all indices i1, . . . , i2l+2.

Example 5.2 For B2 we obtain that

εβ1...β6
α1...α6

(Xi1)α1
·β1
. . . (Xi6)α6

·β6
= s{−

1

3!23
Tr(Xi1Xi2)Tr(Xi3Xi4)Tr(Xi5Xi6)

+
1

4 · 2
Tr(Xi1Xi2Xi3Xi4)Tr(Xi5Xi6)−

1

6
Tr(Xi1 . . .Xi6)}

= 0 ,

relation which expresses the invariant polynomial of order 6, Tr(Xi1 . . .Xi6), in terms of
those of order 2 and 4.

Example 5.3 For C3 we have

εβ1...β8
α1...α8

(Xi1)
α1

·β1
. . . (Xi8)

α8

·β8
= s

{
1

4!24
Tr(Xi1Xi2)Tr(Xi3Xi4)Tr(Xi5Xi6)Tr(Xi7Xi8)

−
1

2!224
Tr(Xi1Xi2)Tr(Xi3Xi4)Tr(Xi5Xi6Xi7Xi8) +

1

12
Tr(Xi1Xi2)Tr(Xi3Xi4Xi5Xi6Xi7Xi8)

+
1

2!42
Tr(Xi1Xi2Xi3Xi4)Tr(Xi5Xi6Xi7Xi8)−

1

8
Tr(Xi1Xi2Xi3Xi4Xi5Xi6Xi7Xi8)

}
= 0 .

17



This expression relates the eighth-order invariant symmetric polynomial with those of lower
degree.

The case of the even orthogonal Dl is different because, in this case, there is an invariant
polynomial which is related to the square root of the determinant of an even dimensional
matrix (the Pfaffian).

Lemma 5.4 (Invariant symmetric polynomials for Dl)
The symmetric invariant polynomials for Dl given by (2.3) are of even order and primitive
for m = 2, 4 . . . , 2l − 2. The higher order polynomials are written in terms of those and
the polynomial Pfi1...il constructed from the Pfaffian using that

εβ1...β2l
α1...α2l

(Xi1)
α1

·β1
. . . (Xi2l)

α2l
·β2l

= Pf(i1...ilPfil+1...i2l) (5.15)

which follows from the fact that det(λiXi) = (Pf(λiXi))
2 for the

(
2l

l

)
skewsymmetric

matrices Xi, and that these matrices constitute a basis in the vector space of 2l × 2l
skewsymmetric matrices.

Example 5.4 For D4 we have

εβ1...β8
α1...α8

(Xi1)
α1
·β1
. . . (Xi8)

α8
·β8

= s

{
1

4!24
Tr(Xi1Xi2)Tr(Xi3Xi4)Tr(Xi5Xi6)Tr(Xi7Xi8)

−
1

2!224
Tr(Xi1Xi2)Tr(Xi3Xi4)Tr(Xi5Xi6Xi7Xi8) +

1

12
Tr(Xi1Xi2)Tr(Xi3Xi4Xi5Xi6Xi7Xi8)

+
1

2!42
Tr(Xi1Xi2Xi3Xi4)Tr(Xi5Xi6Xi7Xi8)−

1

8
Tr(Xi1Xi2Xi3Xi4Xi5Xi6Xi7Xi8)

}
= Pf(i1...i4Pfi5...i8)

6 Invariant symmetric tensors for su(n): a detailed

study

The case of su(n) is specially important since SU(n)-invariant tensors appear in many
physical theories as e.g., QCD. The properties of the su(n)-algebra tensors have already
been discussed in [33, 29, 31, 26, 25] (and tables for the fijk and the dijk for su(n) up to
n=6 have been given in [30]), but we need to perform here a more complete and systematic
study. The case of the cocycles was already discussed in Sec.4. We consider now the
symmetric tensors, exhibiting in particular how the relations defining them for general n
produce primitive tensors up to a given order ml and non-primitive ones when this order
is exceeded. To this aim, we shall use Lemma 3.3 and its Corollary 3.2.

6.1 d-tensors

We begin our study of totally symmetric tensors of arbitrary ranks for su(n) by considering

the d-tensor family [25] (see also [4]). For ranks r = 2 and 3 we have d
(2)
ij = δij , d

(3)
ijk = dijk,
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where the latter is the well-known totally symmetric and traceless su(n) tensor, which
exists for n ≥ 3. Higher order tensors are defined recursively via

d
(r+1)
i1...ir−1irir+1

= d
(r)
i1...ir−1

j
d

(3)
jirir+1

, r = 3, 4, . . . ,

d
(m)
i1...im

= dl1i1i2d
l2
l1i3

. . . dlm−3im−1im

(6.1)

i = 1, ..., (n2 − 1). For r ≥ 3, the above tensors are not symmetric in all their indices, so
the required totally symmetric tensors are defined from their symmetrisation which gives

d
(r)
(i1...ir)

. (6.2)

Due to the fact that dijk is already symmetric, (6.2) normally represents the sum of p < r!
distinct terms divided by p. The construction defines a family of symmetric invariant
tensors of order r.

We want to know the dimension and a basis for the vector space V(m) of invariant
symmetric tensors of a given order m (Corollary 3.2). For example, for n large enough
dimV(4) = 2 and a basis is provided by

d
(4)
(i1i2i3i4) = d

(4)
(i1i2i3)i4

, δ(i1i2δi3i4) = δ(i1i2δi3)i4 . (6.3)

Similarly, also for n large enough dimV(5) = 2 and a basis is provided by

d
(5)
(i1i2i3i4i5) , d(i1i2i3δi4i5) . (6.4)

In fact, dimV(4) = 2, only for n ≥ 4, since if (and only if) n = 3, we have from Ex.5.1

d
(4)
(i1i2i3i4) =

1

3
δ(i1i2δi3i4) . (6.5)

Similarly, dimV(5) = 2 only for n ≥ 5, a basis being provided by d
(5)
(i1i2i3i4i5) and

d(i1i2i3δi4i5). For n = 4, however,

d
(5)
(i1i2i3i4i5) =

2

3
d(i1i2i3δi4i5) , (6.6)

while, for n = 3, we have as a direct consequence of (6.5)

d
(5)
(i1i2i3i4i5) =

1

3
d(i1i2i3δi4i5) . (6.7)

These results will serve as a check on some calculations done later. They are a consequence
of Corollary 3.2; eqs. (6.5) and (6.6) also follow from work in [25] and in [31], both of which
supply values for dimV(4) and suggest possible bases to use for increasing r. The recursive
procedure of [25] actually supplies more information, but the work in [31] is also useful,
providing direct access to results for each fixed n.
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One way to see that not all families of symmetric invariant tensors of a given order are
equally useful arises when one uses them to construct Casimir operators by (2.6)

C(r) = d
(r)
(i1...ir)X

i1 . . .X ir (6.8)

where the Xi are generators of su(n). In principle this yields an arbitrary number of
Casimir operators, one of each order r ≥ 2. But since su(n) has (n− 1) primitive Casimir
operators of order 2, 3, . . . , n, it must be possible to express those with order r > n in
terms of the primitive ones. It is well known how to do this for su(3), where (6.5), (6.7)
imply

C(4) =
1

3
δ(i1i2δi3i4)X

i1X i2X i3X i4 =
1

3
(C(2))2 +

1

9
fi1i2i3X

i1X i2X i3 =
1

3
(C(2))2 +

1

6
C(2) ,

C(5) =
1

3
C(2)C(3) +

1

4
C(3) .

(6.9)
Similarly, for su(4) eq. (6.6) gives

C(5) =
2

3
C(2)C(3) +

2

3
C(3) . (6.10)

It is not possible in practice to treat such matters explicitly or even systematically for
arbitrarily large n, r. It is thus convenient to replace the family of symmetrised d-tensors
by a family for which no similar difficulties arise. This is achieved by using the t-tensors
introduced in Lemma 3.2 and taking advantage of their property (3.18).

6.2 t-tensors

Working within the t family, we can build from t(m) only one non-vanishing scalar quantity,

K(m)(n) = t(m) i1...imt
(m)
i1...im

; (6.11)

all other full contractions are zero by Lemma 3.3. Since the standard su(n) Gell-Mann
matrices λi allow easy computation of the d-tensors, and a well-developed technology to
operate with them exists (which can be completed when necessary with additional relations,
see Appendix), we give the expressions of our t-tensors in terms of the d-tensors in Sec.
6.1. From (3.8) we trivially obtain

ti1i2 = nδi1i2 . (6.12)

Similarly, for m=3,4 eqs. (3.15), (3.6) give

ti1i2i3 =
n2

3
ki1i2i3 =

in2

12
dijk , (6.13)

ti1i2i3i4 =
1

120
[n(n2 + 1)d

(4)
(i1i2i3i4) − 2(n2 − 4)δ(i1i2δi3i4)] , (6.14)
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and also
ti1i2i3i4i5 = λ(n)[n(n2 + 5)d

(5)
(i1i2i3i4i5) − 2(3n2 − 20)d(i1i2i3δi4i5)] , (6.15)

by identifying ti1i2i3i4i5 as the traceless linear combination of the appropriate dimV(5) = 2
tensors. The factor λ(n) has not been determined explicitly: the evaluation of (6.14) is
already time consuming. These results apply to generic n, i.e. for n such that dimV(4) =
2 =dimV(5). It is a valuable check on the computations to insert n = 3 into (6.14) and
n = 4 into (6.14) and (6.15), and employ (6.5), (6.6) and (6.7) to obtain

for n = 3: ti1i2i3i4 =
1

4
[d

(4)
(i1i2i3i4) −

1

3
δ(i1i2δi3i4)] = 0 ; (6.16)

for n = 3: ti1i2i3i4i5 = 42λ(3)[d
(5)
(i1i2i3i4i5) −

1

3
d(i1i2i3δi4i5)] = 0 ; (6.17)

for n = 4: ti1i2i3i4i5 = 84λ(4)[d(5)
(i1i2i3i4i5) −

2

3
d(i1i2i3δi4i5)] = 0 . (6.18)

These results exhibit the crucial property of the t-tensors. They are in one-to-one corre-
spondence with the Ω tensors and hence, as we discuss below, provide an ideal way (free
from problems associated with d-tensors noted above) to discuss Casimir operators. For
low n, for which only (2m− 1)-cocycles with 2m− 1 ≤ 2n− 1 can be non-zero, the generic
results for t(m)-tensors (6.12)-(6.15) collapse according to (6.16)-(6.18), as they must when
m > n, to give vanishing tensors.

An alternative way to see the same mechanism at work stems from calculation of the
numbers K(m)(n) of (6.11). We have

K(m) = 0 m > n , (6.19)

so that su(n) only defines (n−1) non-zero scalars. By direct computation based on (6.12)-
(6.15) (using dijkdijk = (n2 − 1)(n2 − 4)/n [cf. eq. (A.2)] and similar relations, see the
Appendix) we get for m = 2, 3 and 4, with some work in the last case

K(2)(n) = n2(n2 − 1) (6.20)

K(3)(n) = −
1

144
n3(n2 − 1)(n2 − 4) (6.21)

K(4)(n) =

(
1

120

)2
2

3
n2(n2 + 1)(n2 − 1)(n2 − 4)(n2 − 9) (6.22)

and likewise from (6.15)

K(5)(n) = [λ(n)]2
n

3
(n2 + 5)

4∏
l=1

(n2 − l2) . (6.23)
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Hence, it follows that

K(3)(2) = K(4)(2) = K(5)(2) = . . . = 0

K(4)(3) = K(5)(3) = . . . = 0

K(5)(4) = . . . = 0

(6.24)

It is now plausible to conclude that the pattern persists for all su(n) algebras, and that
with the required modifications it remains true for other classical families.

For low rank groups, for which cocycles above a certain order cannot appear, the
corresponding possibly non-zero scalars K(m) that can be formed can be seen to vanish
identically, as expected since the t-tensors used to define them also do so.

6.3 Relations for the Casimir operators C′

Corollary 3.3 exhibits the one-to-one correspondence among the t(m) tensors and the
Casimir invariants C′(m). The properties of the t tensors in Sec. 6.2 show now that we
do not get primitive Casimirs of undesired order, since (6.16), (6.17), for instance, yield
C′(4) = 0 = C′(5). This is of course needed to make sense: there are no Ω(7), Ω(9) cocycles
for su(3) since there are only l primitive Casimirs and cocycles for su(l + 1). Similarly
(6.18) shows that C′(5) = 0 for su(4) since there is no Ω(9) for this algebra.

Example 6.1 For su(n) (n > 2), eq. (3.19) gives

C′(3)
= [Ω(5)]i1i2i3i4i5Xi1Xi2Xi3Xi4Xi5 =

n2

12
kabcXaXbXc =

in2

48
dabcXaXbXc , (6.25)

as expected from (3.20) and (6.13). Similarly, if we compute the 4th-order Casimir from
(3.19), we obtain

C′(4) = [Ω(7)]i1i2i3i4i5i6i7Xi1Xi2Xi3Xi4Xi5Xi6Xi7

=
1

120 · 8
(n(n2 + 1)C(4) − 2(n2 − 4)δ(i1i2δi3i4)Xi1Xi2Xi3Xi4)

=
1

120 · 8
(n(n2 + 1)C(4) − 2(n2 − 4)([C(2)]2 +

n

6
C(2))) .

(6.26)

If we set n = 3 and use (6.9) above we get

C′(4)
=

1

12 · 8
(3C(4) − [C(2)]2 −

1

2
C(2)) = 0 . (6.27)

Thus, with the C′ family, we do not obtain Casimir operators beyond the order of the
higher invariant primitive polynomial of the algebra. Also we have C′(2) = fabcXaXbXc =
(1/2)fabcfabdX

dXc = (n/2)XdXd. Recall that the fourth-order Casimir C(4) is defined by

C(4) = dρ(i1i2d
i3)i4
ρ Xi1Xi2Xi3Xi4 (see (6.8)).
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We may conclude by stating that the l tensors t introduced by Lemma 3.2 are in
a rather privileged position due to their full ‘tracelessness’, eq. (3.18). In particular,
eq. (3.19) provides a definition of the primitive Casimirs C′ which does not contain non-
primitive terms and which hence gives zero, as it should, when their order goes beyond the
maximum ml order permitted.

6.4 Some technical remarks

The crucial results (6.14) and (6.15), which provide explicit expressions for the fourth
and fifth-order invariant symmetric su(n)-tensors require, for their derivation, a series
of expressions involving properties of the f and d tensors of su(n) which at present are
not available in the literature. The same applies to the calculations (6.20)-(6.23) for the
canonical su(n) scalars K(n), on which we have based some generalisations. In addition to
early work [29] containing a modest amount of generic su(n) material, we have used [33]
which contains a wide class of identities for f and d tensors. To proceed further here, we
make use of the fact that an arbitrary symmetric SU(n)-invariant tensor may be expanded
in terms of a basis of V(m) as explained in Subsec.6.1 (see also [25, 31] for low values of m).
We relegate the detailed treatment to an appendix.

7 Recurrence relations for primitive cocycles

Consider first the case of su(n). In the defining representation, the unit matrix and the
Ti’s span a basis for the space of hermitian n × n matrices. This means that, since the
symmetrised product of hermitian matrices is also a hermitian matrix, we can write

{Ti1, . . . , Tim} ∝ k̃σi1...imTσ + k̂i1...imI (7.1)

where k̃σi1...im and k̂i1...im are invariant symmetric polynomials (of order (m+1) and m) that
can be related to the k tensors defined by (2.3). However, to give recurrence relations we
want to use here the invariant symmetric tensors d ([25]; see also [4]) defined by eq. (6.1)6.

The d(m) polynomials are not traceless, and hence differ from those of (3.15). Let
us use them to define cocycles. Since the structure constants Ck

ij themselves provide a
three-cocycle, the five-cocycle may be rewritten in the form

Ω
(5)
i1i2i3i4i5

=
1

5!
εj1j2j3j4j5i1i2i3i4i5

Ω
(3)
j1j2

l1

·
C l2
j3j4

dl1l2j5 . (7.2)

The next case may be treated similarly. The coordinates of Ω(7) are given by

Ω
(7)
i1i2i3i4i5i6i7

=
1

7!
εj1j2j3j4j5j6j7i1i2i3i4i5i6i7

C l1
j1j2

C l2
j3j4

C l3
j5j6

d
(4)
l1l2l3j7

(7.3)

6Other expressions such as (2.3) could be used here, since the non-primitive parts in (2.3) do not
contribute to the cocycle definition due to Corollary 3.1.
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Now, although
d

(4)
l1l2l3j7

= dl1l2
s
· dsl3j7 . (7.4)

(see (6.1)) is not fully symmetric, the extra skewsymmetry in (7.3) (cf. (3.4) and (3.6))
permits us to use (7.4) in (7.3) without having to symmetrise. 7 This means that (7.3)
may be rewritten as

Ω
(7)
i1i2i3i4i5i6i7

=
1

7!
εj1j2j3j4j5j6j7i1i2i3i4i5i6i7

C l1
j1j2

C l2
j3j4

dl1l2
s
·C

l3
j5j6

dsl3j7

=
1

3!

1

7!
εj1k2k3k4j5j6j7
i1i2i3i4i5i6i7

εj2j3j4k2k3k4
C l1
j1j2

C l2
j3j4

dl1l2
s
·C

l3
j5j6

dsl3j7

=
1

7!
εj1k2k3k4j5j6j7
i1i2i3i4i5i6i7

Ω
(5)
j1k2k3k4

s

·
C l3
j5j6

dsl3j7 .

(7.5)

Extending the procedure to an arbitrary Ω(2m−1) cocycle we now get the following

Lemma 7.1 (Recurrence relation for su(n) primitive cocycles)
Given a (2(m− 1)− 1)-cocycle of su(n), the coordinates of the next (2m− 1)-cocycle are
obtained from Ω(2(m−1)−1) by the formula

Ω
(2m−1)
i1...i2m−1

=
1

(2m− 1)!
ε
j1...j2m−1

i1...i2m−1
Ω

(2[m−1]−1)
j1...j2m−4

s

·
C l
j2m−3j2m−2

dslj2m−1 . (7.6)

Clearly, other relations may be found using again (7.6) to express the lower order cocycle
Ω(2[m−1]−1) in terms of Ω(2[m−2]−1), etc.

For the symplectic and orthogonal algebras Bl, Cl, Dl (setting aside for Dl the case of
the polynomial of order ml = l related to the Pfaffian) the primitive symmetric invariant
polynomials of order 2, 4, . . . , 2l (Bl, Cl) and 2, 4 . . . , (2l − 2) (Dl) may be constructed by
means of (5.10), and they lead to primitive cocycles of orders 3, 7, . . . , (4l− 1) (Bl, Cl) and
of order 3, 7, . . . , (4l− 5) (Dl). Thus, the first recurrence relation starts for Ω(11), which is
written as

Ω
(11)
i1...i11

=
1

11!
εj1...j11

i1...i11
C l1
j1j2

. . . C l5
j9j10

vl1...l5j11 (7.7)

or, using (5.10)

Ω
(11)
i1...i11

=
1

11!
εj1...j11

i1...i11
C l1
j1j2

C l2
j3j4

C l3
j5j6

C l4
j7j8

C l5
j9j10

vl1l2l3
s
· vsl4l5j11

=
1

5!

1

11!
εj1k2...k6j7...j11

i1...............i11
εj2...j6k2...k6

C l1
j1j2

C l2
j3j4

C l3
j5j6

vl1l2l3
s
·C

l4
j7j8

C l5
j9j10

vsl4l5j11

=
1

11!
εj1...j11

i1...i11
Ω

(7)
j1...j6

s

·
C l4
j7j8

C l5
j9j10

vsl4l5j11 ,

(7.8)

7Note that, in the above examples, it is not necessary to introduce a five [seven] index ε tensor in the

r.h.s.; instead, skewsymmetry in i2i3i4 [i1...i6] will suffice in (7.2) [(7.5)] because d(ijk) = dijk [d
(4)
(ijkl) =

d
(4)
(ijk)l]. However, for the fifth-order polynomial d

(5)
ijklm we cannot use such a simplification (although in the

symmetrisation there are fewer than 5! different terms). In this case (and for higher order d-polynomials)
we need the complete (2m− 1)-th order ε tensor, eq. (3.4), to remove the non-symmetric parts in (6.1).
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which expresses Ω(11) in terms of Ω(7) and the fourth-order polynomial. This leads to the
following recurrence relation

Lemma 7.2 (Recurrence relation for so(2l + 1), sp(l), so(2l))
Let Ω(4p−1) be a (4p−1)-cocycle for so(2l+1), sp(l) (p = 1, . . . , l), so(2l) (p = 1, . . . , (l−1)).
Then,

Ω
(4p−1)
i1...i4p−1

=
1

(4p− 1)!
ε
j1...j4p−1

i1...i4p−1
Ω

(4[p−1]−1)
j1...j4p−6

s

·
C l1
j4p−5j4p−4

C l2
j4p−3j4p−2

vsl1l2j4p−1 . (7.9)

8 Duality relations for skewsymmetric primitive ten-

sors

The interpretation of the primitive cocycles as closed forms on the group manifold of
a simple compact group G provides another intuitive way to obtain additional relations
among them. Consider the case of su(2). The identification of the su(2)-three-cocycle with
the closed de Rham three-form on SU(2) ∼ S3 tells us that this form is (up to a constant)
the volume form on the SU(2) group manifold. It is known [10, 11, 12, 13, 1, 14, 15, 16, 17]
that, from the point of view of real homology, the compact groups behave as ‘products’ of
spheres of odd dimension (2mi − 1), i = 1, . . . , l. As a result,

Ω = Ω(2m1−1) ∧ . . . ∧ Ω(2ml−1) (8.1)

is proportional to the volume form on the group manifold and, indeed,
∑l

i=1(2mi − 1) =
r = dimG for all simple groups. For instance, if G = SU(3)

Ω(g) = Ω(3)(g) ∧ Ω(5)(g) ∝ Ci1i2i3Ω(5)
i4i5i6i7i8

ωi1(g) ∧ . . . ∧ ωi8(g) (8.2)

is proportional to ω1(g) ∧ . . . ∧ ω8(g), the volume element on SU(3).
Algebraically (ωi(g)→ ωi), we may look at (8.2) as the wedge product of two skewsym-

metric tensors defined on a vector space V of dimension r. If we now endow V with a metric
(the unit metric for G compact) we may introduce the Hodge ∗ operator. Then, the scalar
product of two skewsymmetric tensors α = 1

q!
αi1...iqω

(i1) ∧ . . . ∧ ω(iq) and β of order q is
given by

< α, β >= α ∧ (∗β) =
1

q!
αi1...iqβ

i1...iqω1 ∧ . . . ∧ ωr . (8.3)

Consider the simplest su(2) case. There is only one cocycle (cf . (3.3))

Ω(3) =
1

3!
Ωi1i2i3ω

i1 ∧ ωi2 ∧ ωi3 . (8.4)

We fix the normalisation by demanding that

< Ω(3),Ω(3) >= Ω(3) ∧ (∗Ω(3)) =
1

3!
Ωi1i2i3Ω

i1i2i3ω1 ∧ ω2 ∧ ω3 = ω1 ∧ ω2 ∧ ω3 (8.5)
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(ω1(g) ∧ ω2(g) ∧ ω3(g) is the volume element on SU(2)), i.e.,

1

3!
Ωi1i2i3Ωi1i2i3 = 1 , (8.6)

which is trivially satisfied since Ωi1i2i3 = εi1i2i3 for su(2). Let now G = SU(3), and let the
five cocycle be expressed as by

Ω(5) =
1

5!
Ωi1i2i3i4i5ω

i1 ∧ ωi2 ∧ ωi3 ∧ ωi4 ∧ ωi5 . (8.7)

We now fix now the normalisations of Ω(3) and Ω(5) by requiring that

Ω(3) ∧ (∗Ω(3)) = ω1 ∧ . . . ∧ ω8 = Ω(5) ∧ (∗Ω(5)) (8.8)

This gives the previous relation for the coordinates of Ω(3) and a similar one for those of
Ω(5). Up to an irrelevant sign (which is a minus sign for even r, as is the case of SU(3),
since ∗2 = (−1)q(r−q) where q is the order (always odd) of the cocycle) we may write

Ω(5) = ∗Ω(3) (8.9)

(for a positive definite metric < α, β >=< ∗α, ∗β >) and hence (with r=8)

Ω(5) =
1

(r − 3)!

1

3!
δi1j1δi2j2δi3j3εj1j2j3l1l2l3l4l5Ω

(3)
i1i2i3

ωl1 ∧ ωl2 ∧ ωl3 ∧ ωl4 ∧ ωl5 (8.10)

i.e.,

Ω
(5)
l1l2l3l4l5

=
1

3!
εj1j2j3l1l2l3l4l5Ω(3)j1j2j3 . (8.11)

The previous arguments are not restricted to su(n) nor to the case of two cocycles. In
general we have that relation (8.1) holds and, as a result, we find up to irrelevant signs a
whole series of duality relations among cocycles:

Ω(2mi−1) = ∗(Ω(2m1−1) ∧ . . . Ω̂(2mi−1) ∧ . . .Ω(2ml−1))

Ω(2mi−1) ∧ Ω(2mj−1) = ∗(Ω(2m1−1) ∧ . . . Ω̂(2mi−1) ∧ . . . Ω̂(2mj−1) ∧ . . .Ω(2ml−1))

. . . . . . . . .

(8.12)

where 1 ≤ i, j, . . . ≤ l, etc. In general, the normalisation of the (2mi − 1) cocycles may be
introduced by requiring that

< Ω(2mi−1),Ω(2mi−1) >= Ω(2mi−1) ∧ (∗Ω(2mi−1)) = ω1 ∧ . . . ∧ ωr , (8.13)

the volume element on G.
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Example 8.1 The three- and five-cocycles for su(3), given in co-ordinates in tables 4.1
and 4.3 respectively, satisfy the duality relation

Ωi1i2i3i4i5 =
1

3!2
√

3
εi1i2i3i4i5i6i7i8f

i6i7i8 (8.14)

Example 8.2 For su(4), we use the definitions of the three- and five-cocycles of tables
4.4 and 4.6 and the expression (7.5) of the seven-cocycle Ω(7) to obtain the following
relationship:

15
√

2Ω
(7)
i1i2i3i4i5i6i7

=
1

5!3!
εi1i2i3i4i5i6i7j1j2j3j4j5k1k2k3Ω

(5)
j1j2j3j4j5

Ω
(3)
k1k2k3

(8.15)

These relations have been computed using MAPLE and provide a further check of the
cocycle Tables in Sec. 4.
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Appendix A: Traces of products of su(n) D and F ma-

trices

We define the hermitian D and antihermitian F (adjoint) traceless matrices for arbitrary
su(n) by

(Fa)bc = fbac , (Da)bc = dabc , a, b, c = 1, ..., n2 − 1 , (A.1)

intending to present the identities that we require involving d and f tensors of SU(n) in
terms of traces of products of D and F matrices. All the 2 and 3-fold traces have been
known for a long time [33, 29]. Explicitly,

TrFaFb = −nδab, TrFaDb = 0, TrDaDb =
n2 − 4

n
δab,

TrFaFbFc = −
n

2
fabc, TrFaFbDc = −

n

2
dabc,

TrFaDbDc =
n2 − 4

2n
fabc, TrDaDbDc =

n2 − 12

2n
dabc .

(A.2)

The methods of [33] yield only expressions for such four-fold traces as

TrFaFbFcDd , TrFaDbDcDd, (A.3)
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as well as all others that follow from these which involve an odd number of F and D
matrices. To proceed further (to the evaluation of the traces of all four-fold products of
even numbers of D and F matrices), we begin by treating

TrF(aFbFcFd) and TrD(aDbDcDd) . (A.4)

Once this is done, TrFaFbFcFd, TrDaDbDcDd, TrFaFbDcDd (and other similar traces) can
be calculated by means of further elementary procedures. We list results valid for arbitrary
su(n).

TrFaFbFcFd = δabδcd + δadδbc +
n

4
(dabxdcdx + dadxdbcx − dacxdbdx), (A.5)

TrFaFbFcDd = −
n

4
dabxfcdx −

n

4
fabxdcdx, (A.6)

TrFaFbDcDd =
4− n2

n2
(δabδcd − δacδbd) +

8− n2

4n
(dabxdcdx − dacxdbdx)

−
n

4
dadxdbcx, (A.7)

TrFaDbFcDd =
n

4
(dacxdbdx − dadxdbcx)−

n

4
dabxdcdx, (A.8)

TrFaDbDcDd =
n2 − 12

4n
fabxdcdx +

n

4
dabxfcdx

+
1

n
(fadxdbcx − facxdbdx), (A.9)

TrDaDbDcDd =
n2 − 4

n2
(δabδcd + δadδbc)−

n

4
dacxdbdx

+
n2 − 16

4n
(dabxdcdx + dadxdbcx). (A.10)

Now we illustrate the method of derivation of the above results and perform a variety of
checks of their correctness. In the framework of Sec. 6, we set out from an expansion of
an arbitrary totally symmetric fourth-rank tensor in V(4) and write

TrF(aFbFcFd) = Ad
(4)
(abcd) +Bδ(abδcd) . (A.11)

Contracting both sides with δab and dabe in turn and using results such as (A.2) allows us
easily to find A = n/4, B = 2. Various checks on, e.g., (A.5) and its consequences now
exist. Firstly, in [33] we find identities for contractions of (A.5), (A.7) and (A.10) with dace
and face. Performing such contractions explicitly on our expressions for these traces, we
find total agreement for all SU(n). For the case of SU(3) a more elementary derivation
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of, e.g. TrFaFbFcFd is available because additional identities for SU(3) D and F matrices
exist as described in [29]. One can thus get the n = 3 version of, e.g. TrF(aFbFcFd) without
using any assumptions about symmetric tensors. In particular, for SU(3), we have

TrF(aFbFcFd) =
9

4
δ(abδcd), (A.12)

TrD(aDbDcDd) =
17

36
δ(abδcd), (A.13)

TrDaDbDcDd =
5

9
(δabδcd + δadδbc)−

7

12
δ(abδcd) −

1

6
dacxdbdx. (A.14)

Analogously, from
TrD(aDbDcDd) = A′d

(4)
(abcd) +B′δ(abδcd) (A.15)

and contracting with δab and dabs we deduce that A′ = (n2−32)/4n and B′ = 2(n2−4)/n2.
Armed with the results (A.5) to (A.10) as well as those of (A.2), we can consider

five-fold traces. Thus we postulate (see (6.4))

TrD(aDbDcDdDe) = Ad
(5)
(abcde) +Bδ(abdcde) , (A.16)

Contracting this with δab and dabf in turn gives three linear equations for the coefficients

A and B; in the latter construction equating coefficients of d
(4)
(cde)f = d

(4)
(cdef) and δ(cdδe)f =

δ(cdδef) has actually given rise to two equations. These three equations are consistent and
give

A =
n2 − 80

8n
, B =

3n2 − 20

n2
. (A.17)

The major cancellations that bring (A.17) to the form displayed convince us of the cor-
rectness of our results. There are also other independent checks available because results
for various five-fold traces with no more than three free indices (vertex corrections, in the
diagrammatic language) are known, which we can reproduce. We also note that (A.16)
simplifies, not only in the case of SU(3) when (6.7) is used to obtain

TrD(aDbDcDdDe) = −
5

24
d(abcδde) , (A.18)

but also for SU(4), after use of (6.6), giving

TrD(aDbDcDdDe) =
5

12
d(abcδde). (A.19)

Note that (A.18) and (A.19) may be obtained by contracting the expression

TrD(aDbDcDdDe) = A′′d(abcδde) (A.20)

with δab; the resulting equation gives A′′ = − 5
24

in the su(3) case and A′′ = 5
12

for su(4).
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Finally, we note that, once (A.16) has been evaluated and further five-fold traces ob-
tained from it by elementary procedures, we have all we need to establish the result

TrD(aDbDcDdDeDf) = 4
n2 − 4

n3
δ(abδcdδef) +

n2 − 192

16n
d(ab

xdcd
ydef)

zdxyz

+
3

4

3n2 − 64

n2
δ(abdcd

xdef)x +
5n2 + 48

4n2
d(abcddef). (A.21)

This involves expansion of the left side in terms of a basis [25, 31], of totally symmetric
sixth-rank tensors. Various contractions give four linear equations for the coefficients
involved. Regarding the expansion (A.21) we remark that the tensor d(ab

j djkc d
kl
d d

l
ef)

differs from the tensor of the second term by 2/n times the difference of the tensors of the
fourth minus the first term.

Some further comments are now in order. Many of the procedures followed above
have been guided by graphical ideas such as described in [34]. These simplify complicated
expressions involving d and f tensors by reference to closed loops in their graphical repre-
sentations. These loops correspond to traces and we set about the simplification of three
line loops with the aid of (A.2). Then we learn how to handle in turn all loops of four
and five internal lines. The calculations associated with (A.21) are organised by looking
at contractions diagrammatically, preferring to simplify at all times by identifying loops of
as few lines as possible. It should be noted that many of the identities of this appendix
have been evaluated by different means including the use of MAPLE. Also. we emphasise
that a large number of checks of our results were made by passing to subcases for which
identities were given in [33].

We turn next to the use of the identities presented in this appendix in the derivation
of results quoted in the body of the paper. Consider, e.g. (6.14)

tp1p2p3p4 = Ad
(4)
(p1p2p3p4) +Bδ(p1p2δp3p4). (A.22)

Contractions with δp1p2 and dp1p2q on the right are easy to do, as is the contraction of the
left side with δp1p2 . The latter gives zero by direct calculation as required by Lemma 3.2.
The contraction tp1p2p3p4dp1p2q is not governed by any general argument. To compute it,
we set out from (see (3.15)),

tpqrg = Ω
(7)
abcdefgfabpfcdqfefr, (A.23)

and the cocycles defined using the d-family

Ω
(7)
abcdefg = Ω

(5)
t[abcdf

z
ef ]dtzg, (A.24)

Ω
(5)
tabcdfabs =

n

2
fu[cddt]us, (A.25)
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((7.5), cf. (7.2)) for SU(n). Patient evaluation of the terms involved can be completed with
the aid of four-fold traces evaluated earlier in this appendix and not (it seems) without
them. It is clear that the occurrence of f -tensors in the cocycle definitions is what requires
us to know how to treat traces involving F as well as D matrices. Equation (6.14) emerges
after typical and reassuring cancellations. To obtain (6.15) with λ(n) left undetermined, it
is necessary only to compute the ratio of the two scalars occurring in the expansion with
respect to the basis [25, 31] of V(5) of the left side of (6.15). This requires only contraction
with δp1p2 which is zero.

To prove the result for K(5)(n) in (6.23), we set out from (6.15). The only hard part
involves

d
(5)
(abcde)d

(5)
(abcde) = d

(5)
(abcde)d

(5)
abcde = d

(5)
(abcde)dabxdxcydyde , (A.26)

and at worst two equal terms of the fifteen involved lead to a contracted four-fold trace of

D matrices known from [33]. The result is d
(5)
(abcde)d

(5)
abcde = (n2−4)(n2−1)

15n3 (5n4 − 96n2 + 480).
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[22] J.A. de Azcárraga, J.M. Izquierdo and A.J. Macfarlane, Current algebra and Wess-
Zumino terms: a unified geometric treatment, Ann. Phys. (N.Y.) 202, 1-21 (1990)

[23] For a review see P. Bouwknegt and K. Schoutens, W symmetry in conformal field
theory, Phys. Reports 223, 183-276 (1992)

[24] E. D’Hoker and S. Weinberg, General effective actions, Phys. Rev. D50, R6050-R6053
(1994); E. D’Hoker, Invariant actions, cohomology of homogeneous spaces and anoma-
lies, Nucl. Phys. B451, 725-748 (1995)

[25] A. Sudbery, Ph.D. Thesis, Cambridge Univ. (1970); Computer-friendly d-tensor iden-
tities for SU(n) J. Phys. A23(15), L705-L710 (1990)

[26] F. A. Bais, P. Bouwknegt, K. Schoutens and M. Surridge, Extensions of the Virasoro
algebra constructed from Kac-Moody algebras using higher order Casimir invariants,
Nucl. Phys. B304, 348 (1988)

32



[27] H.B.G. Casimir, Proc. Roy. Acad. Amsterdam 34, 844 (1931)
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