
1. FREE GROUPS AND PRESENTATIONS

Let X be a subset of a group G. The subgroup generated by X , denoted
〈X〉, is the intersection of all subgroups of G containing X as a subset.

If g ∈ G, then g ∈ 〈X〉 ⇔ g can be written as xe1
1 . . .xen

n where xi ∈ X ,
ei =±1, n≥ 0. (When n = 0, this means g = 1.)

[Set of all such products is a subgp of G, and any subgp of G containing
X contains all such products.]

Definition. X generates G if G = 〈X〉.

If f : G→ H is a homom. and G = 〈X〉, then

f (xe1
1 . . .xen

n ) = f (x1)
e1 . . . f (xn)

en

so f is determined by its restriction to X .
If G = 〈X〉 and f : X−→H, is a map to a group H, f does not necessarily

extend to a homom. f̃ : G→ H.
Example. G = 〈x〉 cyclic of order 3, H = 〈y〉 cyclic of order 2
f : X−→H, f (x) = y (X = {x}).
If extension f̃ exists, then x3=1, but

f̃ (x3) = f̃ (x)3 = y3 = y 6= 1

contradiction.
In general, for an extension to exist, need:

xe1
1 . . .xen

n = 1 (xi ∈ X , ei =±1)⇒ f (x1)
e1 . . . f (xn)

en = 1.

Then can define f̃ (xe1
1 . . .xen

n ) = f (x1)
e1 . . . f (xn)

en , and this is a homom.

Free groups.

Definition. Let X be a subset of a group F . Then F is a free group with
basis X if, for any map f : X → H, where H is a group, there is a unique
extension of f to a homom. f̃ : F → H.

Note. Follows that X generates F . For let F1 = 〈X〉. Inclusion map X → F1
has an extension to a homom. f1 : F → F1.
Let f2 : F1→ F be the inclusion map.
Then f2 f1 and idF both extend the inclusion map X → F , so f2 f1 = idF ,
hence f2 is onto, i.e. F = F1.

Proposition 1.1. Let F1, F2 be free groups with bases X1, X2. Then F1 is
isomorphic to F2⇔ |X1|= |X2| . (|Xi|= cardinality of Xi.)

Proof. ⇐ Let f : X1→X2 is a bijective map. Viewed as a mapping X1→F2,
there is an extension to a homom. f̃ : F1→ F2. Similarly, putting g = f−1,
g has an extension to a homom. g̃ : F2 → F1. Both g̃ f̃ and idF1 : F1 → F1
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extend inclusion map X1→ F1, so g̃ f̃ = idF1 . Similarly, f̃ g̃ = idF2 , hence f̃
is an isomorphism.
⇒ Let F be free with basis X , F2 =subgp. gend. by

{
u2 | u ∈ F

}
.

Let V be a vector space over Z/2Z with basis X .
Inclusion mapping X → V extends to a homomorphism F → V of groups;
kernel contains F2, so there is an induced homomorphism F/F2 → V ,
which is a linear map of vector spaces.

Follows that the projection homom. F → F/F2 is injective on X and the
image of X is a Z/2Z basis for F/F2. Hence |X |= dimZ/2Z(F/F2).

Now an isomorphism from F1 to F2 induces an isomorphism F1/F2
1 →

F2/F2
2 (of vector spaces), so |X1|= |X2|. �

Definition. If F is free with basis X , then |X | is the rank of F .

Examples. (1) Trivial gp is free of rank 0 (basis the empty set).
(2) infinite cyclic gp is free of rank 1 (basis any of the two generators).

Existence. Let X be a set. Let X−1 be a set in 1-1 correspondence with X
via a map x 7→ x−1, and with X ∩X−1 = /0. Put X±1 = X ∪X−1 and define
(x−1)−1 = x, for x ∈ X , to obtain an involution X±1 → X±1 without fixed
points.

A word in X±1 is a finite sequence w = (a1, . . . ,an), where ai ∈ X±1 for
1≤ i≤ n, and n≥ 0. (When n = 0, w = 1, the empty word.)
Length of w, denoted |w|, is n (|1|= 0).

Let W be the set of words. If w′ = (b1, . . . ,bm) is also in W , define

w.w′ = (a1, . . . ,an,b1, . . . ,bm)

(1.w = w.1 = w), giving assoc. binary operation on W , with identity elt. 1.
Define w−1 = (a−1

n , . . . ,a−1
1 ) (1−1 = 1).

Then (u.v)−1 = v−1.u−1 ∀u, v ∈W .
For u, v ∈W , define u ' v to mean v is obtained from u by inserting or

deleting a part aa−1, where a ∈ X±1.
(eg xyzz−1x' xyx' xz−1zyx.)
For u, v ∈W , u∼ v means there is a sequence u = u1,u2, . . . ,uk = v, where
ui ' ui+1 (1≤ i≤ k−1). Equivalence relation on W .

if u' v and w ∈W , then u.w' v.w, hence if u∼ v then u.w∼ v.w. Sim-
ilarly, u∼ v implies w.u∼ w.v.

Hence, if u ∼ u1 and v ∼ v1, then u.v ∼ u.v1 and u.v1 ∼ u1.v1, so u.v ∼
u1.v1.

If u∼ v then u−1 ∼ v−1 and u.u−1 ∼ 1∼ u−1.u.
Let [u] denote the equivalence class of u∈W and let F be the set of equiv

classes.
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Follows: F is a group, by defining

[u][v] = [u.v]

with identity elt. [1], and [u]−1 = [u−1].

Definition. Word w∈W is reduced if it contains no part aa−1 with a∈ x±1.

1.2 (Normal Form Theorem). Every equivalence class contains a unique
reduced word.

Proof. At least one-take a word of minimal length in the equiv. class.
Suppose [u] = [v], where u, v are reduced, so there is a sequence u =

u1, . . . ,uk = v with ui ' ui+1. To prove u = v, suffices to show: if k≥ 2, the
sequence can be shortened. Note k 6= 2 as u, v are reduced, so assume k > 2.

Let ui be a word of maximal length in the sequence. Then 1 < i < k
since u, v are reduced. Further, ui is obtained from ui−1 by inserting yy−1

for some y ∈ X±1, and ui+1 is obtained from ui by deleting zz−1 for some
z ∈ X±1. If the parts yy−1 and zz−1 of ui coincide or overlap by a single
letter, then ui−1 = ui+1, and ui, ui+1 can be omitted from the sequence.

Otherwise, can replace ui by u′i, where u′i is obtained from ui by deleting

zz−1, and ui+1 is obtained from u′i by inserting yy−1. This reduces
k
∑

i=1
|ui|,

so after finitely many such replacements we shall be able to shorten the
derivation. �

Consequently, map X → F , x 7→ [x] is injective, as (x) is a reduced word.
Can identify x with [x], for x ∈ X .

Theorem 1.3. The gp F is free with basis X.

Proof. let f : X → H be a map, H a gp. Extend f to f̄ : W → H by:

f̄ (xe1
1 , . . . ,xen

n ) = f (x1)
e1 . . . f (xn)

en

(xi ∈ X , ei =±1) and f̄ (1) = 1. If u' v then f̄ (u) = f̄ (v), so if u∼ v then
f̄ (u) = f̄ (v). So can define f̃ : F → H by f̃ ([u]) = f̄ (u). If u, v ∈W then
f̄ (u.v) = f̄ (u) f̄ (v), hence f̃ is a homom. extending f .

Finally, X generates F , so extension of f is unique. �

Presentations. Let X be a set, W the set of words in X±1, G a gp, α : X→G
a map. Extend α to ᾱ : W → G by ᾱ(xe1

1 , . . . ,xen
n ) = α(x1)

e1 . . .α(xn)
en .

Definition. R a subset of W . The gp G has presentation 〈X | R〉 (via α) if

(1) ᾱ(w) = 1 for all w ∈ R;
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(2) given a gp H and map f : X → H, s.t. f̄ (w) = 1 for all w ∈ R, ∃ a
unique homom. ϕ : G→ H such that ϕα = f .

X
α

����
��

��
� f

��@
@@

@@
@@

G
ϕ

//_______ H

Elts of R are called relators of the presn. If w ∈ R, often write w = 1
instead of w. More generally, if w = w1.w−1

2 , write w1 = w2 instead of w.
Call this a relation.
Map α often suppressed, but can’t assume it’s injective (eg R might contain
x.y−1, where x, y ∈ X , y 6= x).

Remarks.
(1) Requirement that ϕ is unique≡α(X) generates G.
(2) If G, H both have presn 〈X | R〉 via suitable maps, then G∼= H, and

if G∼= H, any presn for G is one for H.
(3) For any X and R⊆W , ∃ a gp with presn 〈X | R〉. Let F be free with

basis X ; then R represents a subset of F . Let N be the normal subgp
of F gend by R (i.e. subgp gend by all conjugates of elts of R), let
G = F/N, α : X→G restriction of projection F→ F/N to X . Then
〈X | R〉 is a presn of G via α .

(4) Any gp has a presn. Let X be a set of generators for G, Let F be
free with basis X , f : F → G extn of inclusion map X → G to F .
Let N = ker( f ), viewed as a set of reduced words. Then 〈X | N〉 is
a presn of G via inclusion map X → G.

Examples. (1) If G has presn 〈x | xn〉, then G is cyclic of order n. Clearly
cyclic of order ≤ n, and if 〈a〉 is cyclic of order n, x 7→ a extends to a
homom. G onto−→〈a〉, so |G| ≥ n.

(2) Let n≥ 2; let a be a rotation of the plane R2 =C anticlockwise through
2π/n (z 7→ ze2πi/n).
Let b be reflection in the real axis (z 7→ z̄), so a has order n, b has order 2,
and bab−1 = a−1

Let Dn = 〈a,b〉 (subgp gend by a, b in the group of isometries of R2).
Let A = 〈a〉, B = 〈b〉; then A�Dn, so Dn = AB, and A∩B = {1}. Hence
|Dn|= |A||B|= 2n.

[Dn, sometimes written D2n, is the dihedral group of order 2n. It is the set
of all isometries of R2 which map the set

{
e2πik/n

}
of complex nth roots of

1 onto itself, equivalently the polygon with these points as vertices if n≥ 3.]
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Claim: 〈x,y | xn,y2,yxy−1 = x−1〉 is a presentation of Dn, via α : x 7→
a, y 7→ b. For let G be the group with this presentation.
α extends to a homom. G onto−→Dn, so enough to show |G| ≤ 2n.
Let H be the subgp of G gend by x; since xn = 1 in G, |H| ≤ n.
Consider cosets H, Hy.

Hx = H, Hyx = Hx−1y = Hy

Hy = Hy, (Hy)y = Hy2 = H

G is gend by {x,y}, so any elt of G permutes {H,Hy} by right mult.
This action on cosets of H is transitive, so {H,Hy} is a complete list of the
cosets. Hence (G : H)≤ 2, so |G|= |H|(G : H)≤ 2n.

(3) 〈X | /0〉 is a presn of the free gp on X .

(4) G any gp, X =
{

xg | g ∈ G
}

a set in 1-1 corr. with G via g 7→ xg. Let

R =
{

xg.xh.x−1
gh | g, h ∈ G

}
. Let H have presn 〈X | R〉.

∃ homom. H onto−→G induced by xg 7→ g (g ∈ G), and this is an isom. [Hint:
in H, xe1

g1 . . .x
en
gn
= xg1

e1 ...gnen .]

Hence 〈X | R〉 is a presentation of G, called the standard presentation of
G, denoted 〈G | rel(G)〉.

Tietze transformations. Let 〈X | R〉 be a presn of G via α . Let F be free
on X , N the normal subgp of F gend by R. Words in X±1 representing elts
of N are called consequences of R.
w is a consequence of R⇔ ᾱ(w) = 1.

Definition. A Tietze transformation of 〈X | R〉 is one of the following.

(T1) replace 〈X | R〉 by 〈X ∪Y | R∪
{

y = wy | y ∈ Y
}
〉, where Y is a set with

X ∩Y = /0 and for each y ∈ Y , wy is a word in X±1.
(T2) The inverse of T1.
(T3) Replace 〈X | R〉 by 〈X | R∪S〉, where S is a set of words in X±1 which
are consequences of R.

(T4) The inverse of T3.

Theorem 1.4. Two presentations 〈X | R〉 and 〈Y | S〉 are presentations of
the same group if and only if one can be obtained from the other by a finite
succession of Tietze transformations.

Proof. Omitted. �
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Example. The presentation 〈x,y | yxy−1x, xn,y2〉 of Dn can be transformed
as follows.

T1
=⇒ 〈x,y,u | yxy−1x, xn, y2, u = yx〉

T3
=⇒ 〈x,y,u | yxy−1x, xn, y2, u = yx, u2 = 1〉

T4
=⇒ 〈x,y,u | xn, y2, u = yx, u2 = 1〉
T3& T4
=⇒ 〈x,y,u | xn, y2, u2, x = y−1u〉

T3& T4
=⇒ 〈x,y,u | (y−1u)n, y2, u2, x = y−1u〉
T2
=⇒ 〈y,u | (y−1u)n, y2, u2〉
T3& T4
=⇒ 〈y,u | y2, u2, (yu)n〉
=⇒ 〈a,b | a2, b2, (ab)n〉


