1. FREE GROUPS AND PRESENTATIONS

Let X be a subset of a group G. The subgroup generated by X, denoted
(X), is the intersection of all subgroups of G containing X as a subset.

If g € G, then g € (X) < g can be written as xi'...x% where x; € X,
e;==*1,n>0. (When n =0, this means g = 1.)

[Set of all such products is a subgp of G, and any subgp of G containing
X contains all such products.]

Definition. X generates G if G = (X).
If f:G— H is ahomom. and G = (X), then
SO X)) = fxe) o f ()

so f is determined by its restriction to X.
If G=(X) and f: X — H, is amap to a group H, f does not necessarily
extend to a homom. f: G — H.

Example. G = (x) cyclic of order 3, H = (y) cyclic of order 2
[iX—H, fx)=y X={x}).
If extension f exists, then x3=1, but

F)=Ffx)P =y =y#1

contradiction.
In general, for an extension to exist, need:

X =1 (5 EX, ¢ = 1) = f() . f(x) = 1.

Then can define f(x]'...x%) = f(x1)*' ... f(x,)%, and this is a homom.

Free groups.

Definition. Let X be a subset of a group F. Then F is a free group with
basis X if, for any map f : X — H, where H is a group, there is a unique

extension of f to a homom. f: F — H.

Note. Follows that X generates F. For let F; = (X). Inclusion map X — Fj
has an extension to a homom. f : FF — F].

Let f, : F1 — F be the inclusion map.

Then f,f1 and idr both extend the inclusion map X — F, so f>f] = idF,
hence f5 is onto, i.e. F' = Fj.

Proposition 1.1. Let Fy, F> be free groups with bases X1, X. Then Fy is
isomorphic to F, < |X1| = |Xa|. (|Xi| = cardinality of X;.)

Proof. <= Let f:X; — X is a bijective map. Viewed as a mapping X; — F?,
there is an extension to a homom. f : F| — F>. Similarly, putting g = =,

g has an extension to a homom. §: F> — F;. Both gf and idp, : F1 — F
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extend inclusion map X; — Fy, so §f = idp,. Similarly, f§ = idp,, hence f
is an isomorphism.
= Let F be free with basis X, F? =subgp. gend. by {u? |u € F}.
Let V be a vector space over Z/27Z with basis X.
Inclusion mapping X — V extends to a homomorphism F' — V of groups;
kernel contains F2, so there is an induced homomorphism F/F? — V,
which is a linear map of vector spaces.

Follows that the projection homom. F — F /F? is injective on X and the
image of X is a Z /27 basis for F /F?. Hence |X| = dimZ/ZZ(F/FZ).

Now an isomorphism from F; to F, induces an isomorphism Fj/ F12 —
F,/F} (of vector spaces), so |X;| = |Xa|. O

Definition. If F is free with basis X, then |X| is the rank of F.

Examples. (1) Trivial gp is free of rank O (basis the empty set).
(2) infinite cyclic gp is free of rank 1 (basis any of the two generators).

Existence. Let X be a set. Let X! be a set in 1-1 correspondence with X
via a map x — x~ ! and with XNX ! =0. Put X*' = X UX~! and define
(x_l)_1 — x, for x € X, to obtain an involution X*! — X*! without fixed
points.

A word in X*! is a finite sequence w = (aj,...,a,), where a; € X*! for
1 <i<mn,andn >0. (Whenn=0,w=1, the empty word.)
Length of w, denoted |wl|,isn  (|1| = 0).

Let W be the set of words. If w' = (by,...,by,) is also in W, define

W.W/: (al,...,an,bl,...,bm)

(1.w =w.1 =w), giving assoc. binary operation on W, with identity elt. 1.
Definew™! = (a,!,...,a;") (17'=1).
Then (u.v) ' =vlu™! Yu, vew.
For u, v € W, define u ~ v to mean v is obtained from u by inserting or
deleting a part aa~!, where a € X *1.
(eg xyzz~'x ~ xyx ~ xz " 'zyx.)
For u, v € W, u ~ v means there is a sequence u = uy,uy,...,u; = v, where
ui ~ujr1 (1 <i<k—1). Equivalence relation on W.
if u~vand w e W, then u.w ~ v.w, hence if u ~ v then u.w ~ v.w. Sim-
ilarly, u ~ v implies w.u ~ w.v.

Hence, if u ~ u; and v ~ vy, then u.v ~ u.vy and u.vy ~ uj.vy, SO u.v ~
up.vy.

Ifu~vthenu ' ~v'anduu ' ~1~utu

Let [u] denote the equivalence class of u € W and let F' be the set of equiv
classes.
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Follows: F is a group, by defining

with identity elt. [1], and [u] ! = [u~1].
Definition. Word w € W is reduced if it contains no part aa~! with a € x*1.

1.2 (Normal Form Theorem). Every equivalence class contains a unique
reduced word.

Proof. At least one-take a word of minimal length in the equiv. class.
Suppose [u] = [v], where u, v are reduced, so there is a sequence u =
up,...,up =v with u; ~ u; 1. To prove u = v, suffices to show: if k > 2, the
sequence can be shortened. Note k = 2 as u, v are reduced, so assume k > 2.
Let u; be a word of maximal length in the sequence. Then 1 <i < k
since u, v are reduced. Further, u; is obtained from u;_; by inserting yy’1
for some y € X*!, and ;. is obtained from u; by deleting zz~! for some
z € X1, If the parts yy~! and zz~! of u; coincide or overlap by a single
letter, then u;_ | = u;11, and u;, u;; | can be omitted from the sequence.
Otherwise, can replace u; by u}, where u/ is obtained from u; by deleting

k
zz~!, and u; | is obtained from u/ by inserting yy~!. This reduces ¥ |u;],

i=1
so after finitely many such replacements we shall be able to shorten the

derivation. O

Consequently, map X — F, x — [x] is injective, as (x) is a reduced word.
Can identify x with [x], for x € X.

Theorem 1.3. The gp F is free with basis X.
Proof. let f: X — H be amap, H a gp. Extend fto f : W — H by:

FOT ) = fa) o f ()

(x; €X,e;=+1)and f(1)=1. Ifu~vthen f(u) = f(v), so if u ~ v then
f(u) = f(v). So can define f: F — H by f([u]) = f(u). If u, v € W then
f(u.v) = f(u)f(v), hence f is a homom. extending f.

Finally, X generates F, so extension of f is unique. 0

Presentations. Let X be a set, W the set of wordsin X*!, Gagp, o: X — G
amap. Extend o to 0 : W — G by ou(x{",...,x5) = ot(x1)°! ... a(x,)°".

Definition. R a subset of W. The gp G has presentation (X | R) (via a) if
(1) a(w)=1forallweR;



(2) givena gp H andmap f: X — H,s.t. f(w)=1forallweR,Ja
unique homom. ¢ : G — H such that o = f.

Elts of R are called relators of the presn. If w € R, often write w = 1
instead of w. More generally, if w = wj.w, ! write w1 = wy instead of w.
Call this a relation.

Map o often suppressed, but can’t assume it’s injective (eg R might contain
xy~ !, wherex,y€ X,y 2 X).

Remarks.

(1) Requirement that ¢ is unique=a(X) generates G.

(2) If G, H both have presn (X | R) via suitable maps, then G = H, and
if G = H, any presn for G is one for H.

(3) Forany X and R C W, 3 a gp with presn (X | R). Let F be free with
basis X; then R represents a subset of F. Let N be the normal subgp
of F gend by R (i.e. subgp gend by all conjugates of elts of R), let
G=F/N, a:X — G restriction of projection F — F /N to X. Then
(X | R) is a presn of G via c.

(4) Any gp has a presn. Let X be a set of generators for G, Let F' be
free with basis X, f : F — G extn of inclusion map X — G to F.
Let N = ker(f), viewed as a set of reduced words. Then (X | N) is
a presn of G via inclusion map X — G.

Examples. (1) If G has presn (x | x"), then G is cyclic of order n. Clearly

cyclic of order < n, and if (a) is cyclic of order n, x — a extends to a

homom. G 2%(a), so |G| > n.

(2) Let n > 2; let a be a rotation of the plane R? = C anticlockwise through
2n/n (z+— ze2mi/my,

Let b be reflection in the real axis (z — Z), so a has order n, b has order 2,
and bab~! = a~!

Let D, = (a,b) (subgp gend by a, b in the group of isometries of R?).
Let A = (a), B= (b); then A<D,, so D, = AB, and ANB = {1}. Hence
D, | = |A||B] = 2n.

[D,,, sometimes written D, is the dihedral group of order 2n. It is the set

2mik/n

of all isometries of R? which map the set {e } of complex nth roots of

1 onto itself, equivalently the polygon with these points as vertices if n > 3.]
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Claim: (x,y | x*,y*,yxy~! = x~!) is a presentation of D,, via o : x
a, y — b. For let G be the group with this presentation.
o extends to a homom. G%Dn, so enough to show |G| < 2n.
Let H be the subgp of G gend by x; since x* = 1 in G, |H| < n.
Consider cosets H, Hy.

Hx=H, Hyx :foly:Hy
Hy=Hy, (Hy)y =Hy'=H

G is gend by {x,y}, so any elt of G permutes {H,Hy} by right mult.
This action on cosets of H is transitive, so {H,Hy} is a complete list of the
cosets. Hence (G: H) <2,s0 |G| = |H|(G:H) <2n.

(3) (X | @) is a presn of the free gp on X.

(4) G any gp, X = {x,| g € G} asetin 1-1 corr. with G via g+ x,. Let
R= {xg.xh.x;hl g, he G}. Let H have presn (X | R).

3 homom. H 2% G induced by x; — g (g € G), and this is an isom. [Hint:

: €1 ey
in H, xg, X = Xg,°1...gqen-]

Hence (X | R) is a presentation of G, called the standard presentation of
G, denoted (G | rel(G)).

Tietze transformations. Let (X | R) be a presn of G via o. Let F be free
on X, N the normal subgp of F gend by R. Words in X*! representing elts
of N are called consequences of R.

w is a consequence of R < a(w) = 1.

Definition. A Tietze transformation of (X | R) is one of the following.

(T1) replace (X | R) by (XUY |RU{y=wy|y€Y}), where Y is a set with
XNY =0andforeachy €Y, wy is a word in X*1,

(T2) The inverse of T1.

(T3) Replace (X | R) by (X | RUS), where S is a set of words in X*! which
are consequences of R.

(T4) The inverse of T3.

Theorem 1.4. Two presentations (X | R) and (Y | S) are presentations of
the same group if and only if one can be obtained from the other by a finite
succession of Tietze transformations.

Proof. Omitted. 0



6

Example. The presentation (x,y | yxy~'x, x",y?) of D, can be transformed

as follows.

=

1

= (nyulyy T Xy u=yx)

HEN Geyy,u | yxy Lo, Xy u=yx, u =1)
ML Geyu | X ¥, u=yx, u* =1)

JECRY Geyu | X% ¥ u?, x =y tu)

B Gy 07 3 x =y
= (ol 67wy, )

T |y 2, (u)")

—  (a,b|d®, b*, (ab)")



