1. FREE GROUPS AND PRESENTATIONS

Let *X* be a subset of a group *G*. The subgroup generated by *X*, denoted $\langle X \rangle$, is the intersection of all subgroups of *G* containing *X* as a subset.

If $g \in G$, then $g \in \langle X \rangle \Leftrightarrow g$ can be written as $x_1^{e_1} \dots x_n^{e_n}$ where $x_i \in X$, $e_i = \pm 1, n \ge 0$. (When n = 0, this means g = 1.)

[Set of all such products is a subgp of *G*, and any subgp of *G* containing *X* contains all such products.]

Definition. *X* generates *G* if $G = \langle X \rangle$.

If $f : G \to H$ is a homom. and $G = \langle X \rangle$, then

$$f(x_1^{e_1}...x_n^{e_n}) = f(x_1)^{e_1}...f(x_n)^{e_n}$$

so f is determined by its restriction to X.

If $G = \langle X \rangle$ and $f : X \longrightarrow H$, is a map to a group H, f does not necessarily extend to a homom. $\tilde{f} : G \rightarrow H$.

Example. $G = \langle x \rangle$ cyclic of order 3, $H = \langle y \rangle$ cyclic of order 2 $f: X \longrightarrow H$, f(x) = y ($X = \{x\}$). If extension \tilde{f} exists, then $x^3 = 1$, but

$$\tilde{f}(x^3) = \tilde{f}(x)^3 = y^3 = y \neq 1$$

contradiction.

In general, for an extension to exist, need:

$$x_1^{e_1} \dots x_n^{e_n} = 1 \ (x_i \in X, \ e_i = \pm 1) \Rightarrow f(x_1)^{e_1} \dots f(x_n)^{e_n} = 1.$$

Then can define $\tilde{f}(x_1^{e_1} \dots x_n^{e_n}) = f(x_1)^{e_1} \dots f(x_n)^{e_n}$, and this is a homom.

Free groups.

Definition. Let *X* be a subset of a group *F*. Then *F* is a *free group with basis X* if, for any map $f: X \to H$, where *H* is a group, there is a unique extension of *f* to a homom. $\tilde{f}: F \to H$.

Note. Follows that *X* generates *F*. For let $F_1 = \langle X \rangle$. Inclusion map $X \to F_1$ has an extension to a homom. $f_1 : F \to F_1$.

Let $f_2: F_1 \to F$ be the inclusion map.

Then f_2f_1 and id_F both extend the inclusion map $X \to F$, so $f_2f_1 = id_F$, hence f_2 is onto, i.e. $F = F_1$.

Proposition 1.1. Let F_1 , F_2 be free groups with bases X_1 , X_2 . Then F_1 is isomorphic to $F_2 \Leftrightarrow |X_1| = |X_2|$. $(|X_i| = \text{cardinality of } X_i.)$

Proof. \Leftarrow Let $f: X_1 \to X_2$ is a bijective map. Viewed as a mapping $X_1 \to F_2$, there is an extension to a homom. $\tilde{f}: F_1 \to F_2$. Similarly, putting $g = f^{-1}$, g has an extension to a homom. $\tilde{g}: F_2 \to F_1$. Both $\tilde{g}\tilde{f}$ and $\mathrm{id}_{F_1}: F_1 \to F_1$

extend inclusion map $X_1 \to F_1$, so $\tilde{g}\tilde{f} = id_{F_1}$. Similarly, $\tilde{f}\tilde{g} = id_{F_2}$, hence \tilde{f} is an isomorphism.

⇒ Let *F* be free with basis *X*, F^2 =subgp. gend. by $\{u^2 | u \in F\}$. Let *V* be a vector space over $\mathbb{Z}/2\mathbb{Z}$ with basis *X*.

Inclusion mapping $X \to V$ extends to a homomorphism $F \to V$ of groups; kernel contains F^2 , so there is an induced homomorphism $F/F^2 \to V$, which is a linear map of vector spaces.

Follows that the projection homom. $F \to F/F^2$ is injective on X and the image of X is a $\mathbb{Z}/2\mathbb{Z}$ basis for F/F^2 . Hence $|X| = \dim_{\mathbb{Z}/2\mathbb{Z}}(F/F^2)$.

Now an isomorphism from F_1 to F_2 induces an isomorphism $F_1/F_1^2 \rightarrow F_2/F_2^2$ (of vector spaces), so $|X_1| = |X_2|$.

Definition. If *F* is free with basis *X*, then |X| is the *rank* of *F*.

Examples. (1) Trivial gp is free of rank 0 (basis the empty set).

(2) infinite cyclic gp is free of rank 1 (basis any of the two generators).

Existence. Let *X* be a set. Let X^{-1} be a set in 1-1 correspondence with *X* via a map $x \mapsto x^{-1}$, and with $X \cap X^{-1} = \emptyset$. Put $X^{\pm 1} = X \cup X^{-1}$ and define $(x^{-1})^{-1} = x$, for $x \in X$, to obtain an involution $X^{\pm 1} \to X^{\pm 1}$ without fixed points.

A word in $X^{\pm 1}$ is a finite sequence $w = (a_1, ..., a_n)$, where $a_i \in X^{\pm 1}$ for $1 \le i \le n$, and $n \ge 0$. (When n = 0, w = 1, the *empty word*.) Length of w, denoted |w|, is n (|1| = 0).

Let W be the set of words. If $w' = (b_1, \dots, b_m)$ is also in W, define

$$w.w' = (a_1, \ldots, a_n, b_1, \ldots, b_m)$$

(1.w = w.1 = w), giving assoc. binary operation on W, with identity elt. 1. Define $w^{-1} = (a_n^{-1}, \dots, a_1^{-1})$ $(1^{-1} = 1)$.

Then $(u.v)^{-1} = v^{-1}.u^{-1} \quad \forall u, v \in W.$

For $u, v \in W$, define $u \simeq v$ to mean v is obtained from u by inserting or deleting a part aa^{-1} , where $a \in X^{\pm 1}$.

 $(\text{eg } xyzz^{-1}x \simeq xyx \simeq xz^{-1}zyx.)$

For $u, v \in W$, $u \sim v$ means there is a sequence $u = u_1, u_2, \dots, u_k = v$, where $u_i \simeq u_{i+1}$ $(1 \le i \le k-1)$. Equivalence relation on *W*.

if $u \simeq v$ and $w \in W$, then $u.w \simeq v.w$, hence if $u \sim v$ then $u.w \sim v.w$. Similarly, $u \sim v$ implies $w.u \sim w.v$.

Hence, if $u \sim u_1$ and $v \sim v_1$, then $u.v \sim u.v_1$ and $u.v_1 \sim u_1.v_1$, so $u.v \sim u_1.v_1$.

If $u \sim v$ then $u^{-1} \sim v^{-1}$ and $u \cdot u^{-1} \sim 1 \sim u^{-1} \cdot u$.

Let [u] denote the equivalence class of $u \in W$ and let F be the set of equiv classes.

Follows: F is a group, by defining

$$[u][v] = [u.v]$$

with identity elt. [1], and $[u]^{-1} = [u^{-1}]$.

Definition. Word $w \in W$ is *reduced* if it contains no part aa^{-1} with $a \in x^{\pm 1}$.

1.2 (Normal Form Theorem). *Every equivalence class contains a unique reduced word.*

Proof. At least one-take a word of minimal length in the equiv. class.

Suppose [u] = [v], where u, v are reduced, so there is a sequence $u = u_1, \ldots, u_k = v$ with $u_i \simeq u_{i+1}$. To prove u = v, suffices to show: if $k \ge 2$, the sequence can be shortened. Note $k \ne 2$ as u, v are reduced, so assume k > 2.

Let u_i be a word of maximal length in the sequence. Then 1 < i < k since u, v are reduced. Further, u_i is obtained from u_{i-1} by inserting yy^{-1} for some $y \in X^{\pm 1}$, and u_{i+1} is obtained from u_i by deleting zz^{-1} for some $z \in X^{\pm 1}$. If the parts yy^{-1} and zz^{-1} of u_i coincide or overlap by a single letter, then $u_{i-1} = u_{i+1}$, and u_i, u_{i+1} can be omitted from the sequence.

Otherwise, can replace u_i by u'_i , where u'_i is obtained from u_i by deleting zz^{-1} , and u_{i+1} is obtained from u'_i by inserting yy^{-1} . This reduces $\sum_{i=1}^{k} |u_i|$, so after finitely many such replacements we shall be able to shorten the derivation.

Consequently, map $X \to F$, $x \mapsto [x]$ is injective, as (x) is a reduced word. Can identify x with [x], for $x \in X$.

Theorem 1.3. *The gp F is free with basis X.*

Proof. let $f: X \to H$ be a map, H a gp. Extend f to $\overline{f}: W \to H$ by:

$$\bar{f}(x_1^{e_1},\ldots,x_n^{e_n}) = f(x_1)^{e_1}\ldots f(x_n)^{e_n}$$

 $(x_i \in X, e_i = \pm 1)$ and $\overline{f}(1) = 1$. If $u \simeq v$ then $\overline{f}(u) = \overline{f}(v)$, so if $u \sim v$ then $\overline{f}(u) = \overline{f}(v)$. So can define $\tilde{f} : F \to H$ by $\tilde{f}([u]) = \overline{f}(u)$. If $u, v \in W$ then $\overline{f}(u.v) = \overline{f}(u)\overline{f}(v)$, hence \tilde{f} is a homom. extending f.

Finally, X generates F, so extension of f is unique.

Presentations. Let *X* be a set, *W* the set of words in $X^{\pm 1}$, *G* a gp, $\alpha : X \to G$ a map. Extend α to $\bar{\alpha} : W \to G$ by $\bar{\alpha}(x_1^{e_1}, \ldots, x_n^{e_n}) = \alpha(x_1)^{e_1} \ldots \alpha(x_n)^{e_n}$.

Definition. *R* a subset of *W*. The gp *G* has presentation $\langle X | R \rangle$ (via α) if

(1) $\bar{\alpha}(w) = 1$ for all $w \in R$;

(2) given a gp H and map $f: X \to H$, s.t. $\overline{f}(w) = 1$ for all $w \in R$, \exists a unique homom. $\varphi: G \to H$ such that $\varphi \alpha = f$.

Elts of *R* are called *relators* of the presn. If $w \in R$, often write w = 1 instead of *w*. More generally, if $w = w_1 \cdot w_2^{-1}$, write $w_1 = w_2$ instead of *w*. Call this a *relation*.

Map α often suppressed, but can't assume it's injective (eg *R* might contain $x.y^{-1}$, where $x, y \in X, y \neq x$).

Remarks.

- (1) Requirement that φ is unique $\equiv \alpha(X)$ generates G.
- (2) If *G*, *H* both have presn $\langle X | R \rangle$ via suitable maps, then $G \cong H$, and if $G \cong H$, any presn for *G* is one for *H*.
- (3) For any X and R ⊆ W, ∃ a gp with presn ⟨X | R⟩. Let F be free with basis X; then R represents a subset of F. Let N be the normal subgp of F gend by R (i.e. subgp gend by all conjugates of elts of R), let G = F/N, α : X → G restriction of projection F → F/N to X. Then ⟨X | R⟩ is a presn of G via α.
- (4) Any gp has a presn. Let X be a set of generators for G, Let F be free with basis X, f : F → G extn of inclusion map X → G to F. Let N = ker(f), viewed as a set of reduced words. Then ⟨X | N⟩ is a presn of G via inclusion map X → G.

Examples. (1) If *G* has presn $\langle x | x^n \rangle$, then *G* is cyclic of order *n*. Clearly cyclic of order $\leq n$, and if $\langle a \rangle$ is cyclic of order *n*, $x \mapsto a$ extends to a homom. $G \xrightarrow{\text{onto}} \langle a \rangle$, so $|G| \geq n$.

(2) Let $n \ge 2$; let *a* be a rotation of the plane $\mathbb{R}^2 = \mathbb{C}$ anticlockwise through $2\pi/n \ (z \mapsto ze^{2\pi i/n})$.

Let *b* be reflection in the real axis $(z \mapsto \overline{z})$, so *a* has order *n*, *b* has order 2, and $bab^{-1} = a^{-1}$

Let $D_n = \langle a, b \rangle$ (subgp gend by a, b in the group of isometries of \mathbb{R}^2). Let $A = \langle a \rangle$, $B = \langle b \rangle$; then $A \leq D_n$, so $D_n = AB$, and $A \cap B = \{1\}$. Hence $|D_n| = |A||B| = 2n$.

 $[D_n, \text{ sometimes written } D_{2n}, \text{ is the$ *dihedral group* $of order 2n. It is the set of all isometries of <math>\mathbb{R}^2$ which map the set $\{e^{2\pi i k/n}\}$ of complex *n*th roots of 1 onto itself, equivalently the polygon with these points as vertices if $n \ge 3$.]

Claim: $\langle x, y | x^n, y^2, yxy^{-1} = x^{-1} \rangle$ is a presentation of D_n , via $\alpha : x \mapsto a, y \mapsto b$. For let *G* be the group with this presentation.

 α extends to a homom. $G \xrightarrow{\text{onto}} D_n$, so enough to show $|G| \le 2n$. Let *H* be the subgp of *G* gend by *x*; since $x^n = 1$ in *G*, $|H| \le n$. Consider cosets *H*, *Hy*.

$$Hx = H, \quad Hyx = Hx^{-1}y = Hy$$
$$Hy = Hy, \quad (Hy)y = Hy^{2} = H$$

G is gend by $\{x, y\}$, so any elt of *G* permutes $\{H, Hy\}$ by right mult. This action on cosets of *H* is transitive, so $\{H, Hy\}$ is a complete list of the cosets. Hence $(G:H) \leq 2$, so $|G| = |H|(G:H) \leq 2n$.

(3) $\langle X \mid \emptyset \rangle$ is a presn of the free gp on *X*.

(4) *G* any gp, $X = \{x_g \mid g \in G\}$ a set in 1-1 corr. with *G* via $g \mapsto x_g$. Let $R = \{x_g.x_h.x_{gh}^{-1} \mid g, h \in G\}$. Let *H* have presn $\langle X \mid R \rangle$.

 \exists homom. $H \xrightarrow{\text{onto}} G$ induced by $x_g \mapsto g$ ($g \in G$), and this is an isom. [Hint: in $H, x_{g_1}^{e_1} \dots x_{g_n}^{e_n} = x_{g_1^{e_1} \dots g_n^{e_n}}$.]

Hence $\langle X | R \rangle$ is a presentation of *G*, called the *standard presentation* of *G*, denoted $\langle G | \operatorname{rel}(G) \rangle$.

Tietze transformations. Let $\langle X | R \rangle$ be a presn of *G* via α . Let *F* be free on *X*, *N* the normal subgp of *F* gend by *R*. Words in $X^{\pm 1}$ representing elts of *N* are called *consequences* of *R*. *w* is a consequence of $R \Leftrightarrow \overline{\alpha}(w) = 1$.

Definition. A *Tietze transformation* of $\langle X | R \rangle$ is one of the following.

(T1) replace $\langle X | R \rangle$ by $\langle X \cup Y | R \cup \{ y = w_y | y \in Y \} \rangle$, where Y is a set with $X \cap Y = \emptyset$ and for each $y \in Y$, w_y is a word in $X^{\pm 1}$.

(T2) The inverse of T1.

(T3) Replace $\langle X | R \rangle$ by $\langle X | R \cup S \rangle$, where S is a set of words in $X^{\pm 1}$ which are consequences of R.

(T4) The inverse of T3.

Theorem 1.4. Two presentations $\langle X | R \rangle$ and $\langle Y | S \rangle$ are presentations of the same group if and only if one can be obtained from the other by a finite succession of Tietze transformations.

Proof. Omitted.

Example. The presentation $\langle x, y | yxy^{-1}x, x^n, y^2 \rangle$ of D_n can be transformed as follows.

$$\begin{array}{c} \stackrel{\text{T1}}{\Longrightarrow} & \langle x, y, u \mid yxy^{-1}x, \, x^n, \, y^2, \, u = yx \rangle \\ \stackrel{\text{T3}}{\Longrightarrow} & \langle x, y, u \mid yxy^{-1}x, \, x^n, \, y^2, \, u = yx, \, u^2 = 1 \rangle \\ \stackrel{\text{T4}}{\Longrightarrow} & \langle x, y, u \mid x^n, \, y^2, \, u = yx, \, u^2 = 1 \rangle \\ \stackrel{\text{T3\& T4}}{\Longrightarrow} & \langle x, y, u \mid x^n, \, y^2, \, u^2, \, x = y^{-1}u \rangle \\ \stackrel{\text{T3\& T4}}{\Longrightarrow} & \langle x, y, u \mid (y^{-1}u)^n, \, y^2, \, u^2, \, x = y^{-1}u \rangle \\ \stackrel{\text{T2}}{\Longrightarrow} & \langle y, u \mid (y^{-1}u)^n, \, y^2, \, u^2 \rangle \\ \stackrel{\text{T3\& T4}}{\Longrightarrow} & \langle y, u \mid y^2, \, u^2, \, (yu)^n \rangle \\ \stackrel{\text{T3\& T4}}{\Longrightarrow} & \langle a, b \mid a^2, \, b^2, \, (ab)^n \rangle \end{array}$$